Chapter 3 467
Figure 4 Solution for Exercise 3, Section 3.6.
Givenα,pcan be adjusted so thatmis an integer whenevernis an integer.
Section 3.5
- Ifq≥0, the numerator in Eq. (3) must also be greater than or equal to 0,
sinceφ 1 (x)cannot be identically 0. - 2π^2 /3isoneestimatefromy=sin(πx).
5.
∫ 2
1
(y′)^2 dx=^1
3
,
∫ 2
1
y^2
x^4
dx=^25
6
−6ln2;
N(y)/D(y)= 42 .83;λ 1 ≤ 6 .54.
Section 3.6
1.u(x,t)=^12 [fe(x+ct)+Go(x+ct)]+^12 [fe(x−ct)−Go(x−ct)], wherefe
is the even extension offandGois the odd extension ofG.
- See Fig. 4.
- See Fig. 5.
7.u(x,t)=
1
2
[
f(x+ct)+f(x−ct)
]
+
1
2 c
∫x+ct
x−ct
g(y)dy.
Chapter 3 Miscellaneous Exercises
1.u(x,t)=
∑∞
1
bnsin(λnx)cos(λnct),bn= 2
(
1 −cos(nπ)
)
/nπ,λn=nπ/a.