478 Answers to Odd-Numbered Exercises
- a.u=−r
2
4
+c 1 ln(r)+c 2 ;
b.u=−(ln(r))
2
2
+c 1 ln(r)+c 2.
39.V(x,y)∼=a 0 =^1
a
∫a
0
f(x)dxify> 5 L(becausee−λ^1.^5 L∼=0).
- The solution isθ(X,Y)=1. The low Biot number,B=0, means a very
large value for conductivityκ, so very little or no cooling takes place.
Chapter 5
Section 5.1
- ∂
(^2) u
∂x^2
+∂
(^2) u
∂y^2
=^1
c^2
∂^2 u
∂t^2
,0<x<a,0<y<b,0<t,
u(x, 0 ,t)=0, u(x,b,t)=0, 0 <x<a,0<t,
u( 0 ,y,t)=0, u(a,y,t)=0, 0 <y<b,0<t,
u(x,y, 0 )=f(x,y), ∂∂ut(x,y, 0 )=g(x,y),0<x<a,0<y<b.
- ∂
(^2) u
∂x^2
+∂
(^2) u
∂y^2
+∂
(^2) u
∂z^2
=^1
c^2
∂^2 u
∂t^2
.
Section 5.2
1.
∫c
0
∂^2 u
∂z^2
dz=∂u
∂z
∣∣
∣∣
c
0
=0 by Eq. (12).
3.W′′+( 2 h/bκ)(T 2 −W)=0, 0 <x<a, W( 0 )=T 0 , W(a)=T 1.
W(x)=T 2 +Acosh(μx)+Bsinh(μx),whereμ^2 = 2 h/bκ,
A=T 0 −T 2 ,B=(T 1 −T 2 −Acosh(μa))/sinh(μa).
5.∇^2 u=^1 k∂∂ut,0<x<a,0<y<b,0<t,
∂u
∂x(^0 ,y,t)=0, u(a,y,t)=T^0 ,0<y<b,0<t,
u(x, 0 ,t)=T 0 ,
∂u
∂y(x,b,t)=0,^0 <x<a,0<t,
u(x,y, 0 )=f(x,y),0<x<a,0<y<b.