- SOME FURTHER CALCULATIONS RELATED TO :F AND W 281
and let v be a symmetric 2-tensor. If g (s) = g +sh, then
d2
-d 2 I v (g (s)) = ( T A)^1 A ( --^1 2. 2^1 2)
s s=O Vol M M^2 l\7vl + ld1vvl - -^2 l\7wl dμ- Vol ( M) L ( Il;;.,v;;vt.+ 4~ w') dμ
- ~ (
1f Vdμ)
22n Vol (.M) JM '
where w is defined uniquely by~w +:!!._~div (divv),
2T JM wdμ= 0.
7.3. A matrix Harnack calculation for the adjoint heat equa-
tion. We also have the following Harnack-type calculation (see [287]). We
may think of equation (6.113) below as a Bochner-type formula which says
that the evolution of the modified Ricci tensor is given by a backward Lich-
nerowicz Laplacian heat operator with Hamilton's matrix Harnack quadratic
as the main term on the RHS.
PROPOSITION 6.95 (Matrix Harnack formula for adjoint heat equation).
Under the systemwe have(6.113){)
ot9ij = -2Rij,
Of 2 nE
ot = -~f-R+ l\7fl - 2T'
dT
dt = E,( :t + ~L - 2\7 f · \7) ( \7i\7jf + Rij + 2 :9ij)
= 2 ( ~LRij - ~\7i\7jR + RikRjk + ;T Rij)
- 2 ((Pi£j + Pjei) \7d + Rkije\7d\7kf)
- ( \7i\7kf +Rik+ 2ET9ik) (-\7j\7kf + Rjk + 2:9jk)
- (-\7i\7kf +Rik+ 2 :9ik) (\7j\7kf + Rjk + 2 :9jk) ·
PROOF. We have(%t +~L) \7i\7j¢=\7i\7j (~~ +~¢)-2 (:trfj) \7e¢