282 6. ENTROPY AND NO LOCAL COLLAPSING
for any function¢ of space and time. We may also rewrite the evolution of
Re in the following funny way:
(~ at + ~L) R-· iJ -- 2~LD .LL</,J· ..
Hence
( :t + ~L) ( \Ji\Jjf + Rij + 2 :9ij)
(
(^2) ) ( 8 e) c
2
=2~LRij+\Ji\Jj -R+l\Jfl -2 8trij \Jd-2r29ij--:;.Rij c
= 2 ( ~LRij - ~\Ji\JjR + Rkije\Jkf\Jd)
- 2\Jk \Ji\Jjf\Jkf + 2\Ji\Jkf\Jj\Jkf
c^2 c - 2 (\JiRje + \JjRie - \Je~j) \Jd - 2 T 2 9ij - -Rij T
= 2\Jk ( \Ji\Jjf + Rij +
2
c
7
9ij) \Jkf - 2 ( ~LRij - ~\Ji\JjR + ~kRjk + 2 : ~j)
- 2 ((Piej + Pjei) \Jd + Rkije\Jkf\Jd)
2c c^2
+ 2\JiY'kf\Jj\Jkf - 2RikRjk - -Rij - -
2 2
9ij
T T
and the result follows from rewriting the last line. D
REMARK 6.96. In the evolution equation for f, we may replace -~~ on
the RHS by any function of t.
Since the matrix Harnack quadratic is the space-time Riemann curva-
ture, we ask the following.
and
PROBLEM 6.97. Is there a space-time interpretation of equation (6.113)?
For convenience, we define
T~-iJ = • .L D LiJ .. - \J·\J i J ·J + ~g·· 2r iJ
1 c
H (X)ij ~ ~L~j - 2 \Ji\JjR + RikRjk + 27 ~j
+ (Piej + Pjei) Xe+ RkijeXkXe.
Then we may rewrite (6.113) as
( :t + ~L - 2\J f · \J) Sfj = 2H (\J f)ij - SfkTfk - SjkYi\,
where Sfk is defined in (6.27).