1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1

  1. THE SECOND VARIATION FORMULA FOR £ AND THE HESSIAN OF L 319


If L (·, f) is not C^2 at q, the above inequality is understood in the bar-
rier sense; this is our convention below. More precisely, there is a smooth

function L (·, f) defined near q such that ( Hess(q,-r) L) (Y, Y) satisfies in-


equality (7.70) and L (-, f) is an upper barrier function for L (·, f) with
L(q,r)=L(q,r).

LEMMA 7.41 (Upper bound for Hessian of L). Fix To E (0, T). Given

f E (0, To], q E M, and Y E TqM, the Hessian of the L-distance function

L (·, f) at q has the upper bound

(7.71) ) (

d;(-r) (p, q) 1 ) 2
(Hess(q,7') L (Y, Y) :::; C2 + C2 VT + VT JYI '

where C2 is a constant depending only on n, To, T, Co (Co 2':. sup Mx[O,T] IRml
is as in (7.27)).

PROOF. From Shi's derivative estimate and the equation for g 7 Re, there
is a constant C1 depending on n, T-To, and Co such that I g 7 Rel , l\7\7 RI ,
IV' Rel , and l\7\7 Rml are all bounded by C1 on M x [O, To]. From (7.52)
and Lemma 7.13(ii) and (iii), we get

I 'TX (T)l2 < e6G


(^0) T I !TX (T )12 + C'#,T e6GoT
y·1 - y ' g(T.) 12C2
0


< e6GoT --.C ('Y) + --f + _2 -e6GoT


(

1 nCo ) C^2 T


  • 2VT 3 12c5


< e6G^0 T --f + --d2 _ (p q) + --f + _2 -e6GoT


(

nCo e^2007 nCo ) C^2 T


  • 3 4f g(T) ' 3 12c5


(

d;(-r) (p, q)) G
:::; 1 + - 2,
T

where C 2 is a constant depending only on n, To, T, and Co.
Hence, from (7.63), we have


IH (X, Y)I (T) :'.S C1 IY (T)l^2 +Co IY (T)l^2
T

+Co~ ( 1+ <lier)
7

(p, q)) C2 IY ( 7)1^2


+ c, H 1 + <lier)


7

(p, q)) c, · IY (7)1^2


:::; C2 (i + .!. + d;(-r) ~' q)) IY (T)l^2.
T TT
Free download pdf