320 7. THE REDUCED DISTANCE
Plugging the above estimate into (7.70) and using IY (7)1^2 = ¥ IY (f)l^2 ,
we get
D
5.3. Laplacian comparison theorem for L. Tracing the Hessian
comparison theorem for L in (7.70), we obtain the Laplacian comparison
theorem for L. We adopt the notation in Corollary 7.40. Let {Ei}~ 1 be an
orthonormal basis at q = ry (f). For each i, we extend Ei to a vector field
Ei (7), 7 E [O, f], along ry to solve the ODE (7.66) with Ei (f) = Ei. Below,
Ei will stand for either Ei E TqM or Ei ( 7) , which will be clear from the
context. Taking Y = Ei in (7.70) and summing over i, we have
n
b.L (q, f) = L Hess(q,1') L (Ei, Ei)
i=l
n
- 2\l'fLRc(Ei,Ei) (f).
i=l
We compute, without assuming (Ei (f) ,Ej (f)) = 5ij, that
d d
d7 (Ei, Ej) (7) = d7 [g (7) (Ei(7) 'Ej (7))]
= 2Rc(Ei,Ej) + (VxEi,Ej) + (Ei, VxEj)
= 2Rc(Ei,Ej) + (-Rc(Ei) + 2 ~Ei,Ej)
+ ( Ei, -Re (Ej) +
2
1
7
Ej)
1
= - (Ei,Ej) (7).
7
Hence
(7.72)
for all 7 E [O, f]. When i = j, we recover (7.68), which says IEi ( 7) 12 = 7 /f.