- MEAN VALUE INEQUALITY FOR SOLUTIONS OF HEAT EQUATIONS 309
LEMMA 25.3.
(25.19) 1T
2
r IV' ('!j;vP)l~(T) dμg(T) dT :S L1T
2
r v^2 Pdμg(T) dT
T1 Jn T1 Jn
and
(25.20) (L 'l/;^2 v^2 Pdμ 9 (T)) (T2) :S 2L 1:
2
L v^2 Pdμ 9 (T) dT,
where supp('!/;) c D x [T1, T2] and D c n.
Inequality (25.19) is sometimes called a 'reverse Poincare-type inequal-
ity' since it is roughly of the form J IV' fl^2 :SC J f^2.
Since (25.5) implies
--n/2 -n/2
C 0 dμ9 :S dμ 9 (T) :S C 0 dμ9
and lalg :S c~/^2 lalg(T) for any 1-form a, inequality (25.19) implies (using g
instead of g ( T))
1
T2 r IV' ('!j;vP)I~ dμ_g dT :S Cont21T2 r IV' ('!j;vP)l~(T) dμg(T) dT
T1 Jn T1 Jn
(25.21)
Similarly, (25.20) implies
(25.22) (L 'lj;^2 v^2 Pdμ,q) (72) :S 2C'[JL 1:
2
L v^2 Pdμ_gdT.
STEP 2. Bounding higher LP-norms of v by lower LP-norms. To make
use of the reverse Poincare-type inequality (25.21), we now recall the follow-
ing version of the L^2 -Sobolev inequality (see [165]).
PROPOSITION 25.4 (L^2 -Sobolev inequality in a ball). There exists a con-
stant Cs< oo depending only on n such that for any complete Riemannian
manifold (Mn,9), where n 2: 3, if K 2: 0, xo EM, and r E (0, oo) are such
that
Rc,q 2:-K inB_g(xo,2r),
then
:S e^0 s(l+VKr) Vol§~ B,q (xo, r) r (r^2 1v f I~ + f^2 ) dμ_g
JB1j(xo,r)
for any 000 function f with compact support in B,q (xo, r) ..