310 25. ESTIMATES OF THE HEAT EQUATION FOR EVOLVING METRICS
REMARK 25.5. If n = 2, then under the assumptions of the above lemma
we have for any real number p > 2
(
1 /fl p~2 dμ_g) p;2
Bg(xo,r)
:::; eCs(P) ( l+VKr) Vol;~ B_g (xo, r) r (r^2 /\7 f I~ + f^2 ) dμ_g,
J Bg(xo,r)
where Cs (p) < oo depends only on p.
Now given xo E int (n), we take D = B_g (xo, r), where r E (0, 2ro], where
ro satisfies (25.8). We then have
supp ('If;) c B_g (xo, r) x [ri, r2].
Assume from now on that n 2:: 3 (we leave the n = 2 case as an exercise). In
view of (25.19), we apply the above £^2 -Sobolev inequality to the function
'lj;vP, which is possible since Rc_g 2:: -K in n. We obtain for any p E [1, oo)
and r E [ri, T2],
n-2
(
r /1f;vP/n
2
."..'2 dμ_g)---;n (r)
} Bg(xo,r)
:::; e^0 s(i+v'Rr) Vol§~ Bg (xo, r) ( r (r^2 /\7 ('lj;vP)/~ + '1j;^2 v^2 P) dμ_g) (r).
J Bg(xo,r)
On the other hand, by Holder's inequality, since n;:;-^2 + ~ = 1, we have
1
/1f;vP/_n_dμ_g 2(n+2) = l /1f;vP/^2 /1f;vP/n^4 dμ_g
B9(xo,r) B9(xo,r)
Thus
(25.23)
n-2 2
:::; (1 /'lj;vP/!."..'2 dμ_g\ ---;n( r /'lj;vP/2 dμ_g\ ~
B9(xo,r) J } Bg(xo,r) J