1547845440-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_III__Chow_

(jair2018) #1

  1. BOUNDS OF THE HEAT KERNEL FOR AN EVOLVING METRIC 359


Integrating by parts and throwing away a negative boundary term, we have
(26.71)

r H (x, T; y, v) dμg(T) (x)
}M-B9(y,A,;:r=v)

< c c;/2 roo Vol9 B9 (y, p) e-D(~~v) .!!-.._ ( p2 ) dp



  • }Ay:r=v Volg Bg (y, P,.) dp D (T - v).


Now by the volume comparison theorem, for p E [VT - v, oo),

Vol9 B9 (y, p) < Vol_6 (p)


Vol9B9 (y, ffl -Vol_n~l ( ffl'


so that

r H (x, T; y, v) dμg(T) (x)
JM-B9(y,A,;:r=v)

l


oo Vol K (p) 2
< 2C c;/^2 -n=I e-f;"" _j}_dp

- Afo Vol _ K. n-1 (JI) DO" '


where O" ~ 7 - v. It is not difficult to see that, as a function of A, the


RHS of (26.71) tends to 0 as A-+ oo uniformly in O" E (0, T]. Basically, the


exponential quadratic decaying term beats the exponential linear growing
term from the volume comparison.


(2) We leave this as an exercise. D

From combining Lemma 26.28 with Lemma 26.14, we immediately ob-
tain


COROLLARY 26.29. There exist constants A< oo and c > 0 such that


(26.72) r H(x,T;y,v)dμg(T) (x) 2: c
}B9(y,Ay:r=v)
and

(26. 73) r H(x,T;y,v)dμg(v) (y) 2: c.


j B9 ( x,A,;:r=v)


We have the following lower bound along the diagonal (see Lemma 5.6
in [26]).


LEMMA 26.30 (Lower bound for the heat kernel along the diagonal).

There exists a constant c > 0 such that for any y E M and 0 :S v < T :S T


(26.74)


c
H (y,T;y,v) 2: (. ~.

Vol9 Bg y, y7 - v 1

Free download pdf