Bibliography
[l] Abraham, Ralph. Lectures of Smale on differential topology. Columbia University, New
York, 1963.
[2] Abresch, Uwe; Meyer, Wolfgang. Injectivity radius estimates and sphere theorems. In Com-
parison geometry (Berkeley, CA, 1993 -94), 1 -47, Math. Sci. Res. Inst. Pub!., 30, Cambridge
Univ. Press, Cambridge, 1997.
[3] Adams, Colin C. Volumes of N-cusped hyperbolic 3-manifolds. J. London Math. Soc. (2)
38 (1988), no. 3, 555 - 565.
[4] Agmon, S.; Douglis, A .; Nirenberg, L. Estimates near the boundary for solutions of elliptic
partial differential equations satisfying general boundary conditions. JI. Comm. Pure Appl.
Math. 1 7 (1964), 35-92.
[5] Almgren, Frederick J. Existence and regularity almost everywhere of solutions to elliptic
variational problems with constraints. Memoirs AMS 165 (1976).
[6] Amann, Herbert. Linear and quasilinear parabolic problems. Vol. I. Abstract linear theoriJ.
Monographs in Mathematics, 89. Birkhiiuser Boston, Inc., Boston, MA, 1995.
[7] Anderson, Greg; Chow, Bennett. A pinching estimate for solutions of the linearized Ricci
fiow system on 3-manifolds. Calculus of Variations 2 3 (2005), no. 1, 1- 12.
[8] Andrews, Ben; Bryan, Paul. Curvature bounds by isoperimetric comparison for normalized
Ricci fiow on the two-sphere. Cale. Var. Partial Differentia l Equations 39 (2010), no. 3-4 ,
419-428.
[9] Andrews, Ben; Chow, Bennett; Guenther, Christine. Introduction to geometric fiows and
monotonicity. In preparation.
[10] Andrews, Ben; Nguyen, Huy. Four-manifolds with 1 /4-pinched fiag curvatures. Asian J.
Math. 13 (2009), no. 2, 251 - 270.
[11] Angenent, Sigurd B .; Isenberg, James; Knopf, D a n. Formal matched asymptotics for degen-
erate Ricci fiow neckpinches. Nonlinearity 24 (2011), no. 8, 2265-2280.
[12] Angenent, Sigurd B.; Isenberg, James; Knopf, Dan. Degenerate neckpinches in Ricci fiow.
J. Reine Angew. Math. (Crelle) (2015), to appear.
[13] Angenent, Sigurd B.; Knopf, D a n. An example of neckpinching for Ricci fiow on sn+^1.
Math. Res. Lett. 11 (2004), no. 4, 493 - 518.
[14] Angenent, Sigurd B.; Knopf, Dan. Precise asymptotics of the Ricci fiow neckpinch.
Comm. Anal. Geom. 15 (2007), no. 4, 773 - 844.
[15] Angenent, Sigurd B.; Velazquez, J. J. L. Degenerate neckpinches in mean curvature fiow.
J. Reine Angew. Math. 482 (1997), 15- 66.
[16] Bakry, D.; Emery, Michel. Diffusions hypercontractives. (French) [Hypercontractive diffu-
sions} Seminaire de probabilites, X IX , 1983/84, 177 - 206, Lecture Notes in Math., 1123 ,
Springer, Berlin, 1985.
[17] Bamler, Richard. Stability of hyperbolic manifolds with cusps under R icci fiow. Adv. of
Math., to appear.
[18] Bamler, R ichard. Stability of symmetric spaces of noncompact type under Ricci fiow. G eo-
metric and Functional Analysis, to appear.
[19] Bamler, Richard R Long-time behavior of 3 dimensional Ricci fiow - Introduction.
arXiv:l411.6658.
[20] Bamler, Richard H. Long-time behavior of 3 dimensional Ricci fiow -A: Generalizations
of Perelman's long-time estimates. arXiv:l411.6655.
[21] Bamler, Richard H. Long-time behavior of 3 dimensional Ricci fiow -B: Evolution of the
minimal area of simplicial complexes under Ricci fiow. arXiv:l411.6649.
353