354 BIBLIOGRAPHY
[22] Bamler, Richard H. Long-time behavior of 3 dimensional Ricci fiow -C: 3-manifold topology
and combinatorics of simplicial complexes in 3-manifolds. arXiv:1411.6.647
[23] Bamler, Richard H. Long-time behavior of 3 dimensional Ricci fiow -D: Proof of the main
results. arXiv:1411.6642.
[24] Benedetti, Riccardo; Petronio, Carlo. Lectures on hyperbolic geometry. Universitext.
Springer-Verlag, Berlin, 1992.
[25] Berger, M.; Ebin, D. Some decompositions of the space of symmetric tensors on a Rie-
mannian manifold. J. Differential Geometry 3 (1969), 379-392.
[26] Berger, Beverly K.; Garfinkle, David; Isenberg, James; Moncrief, Vincent; Weaver, Marsha.
The singularity in generic gravitational collapse is spacelike, local, and oscillatory. Mod.
Phys. Lett. A13 (1998), 1565-1574.
[27] Berger, Marcel; Gauduchon, Paul; Mazet, Edmond. Le spectre d'une variete riemannienne.
(French) Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971.
[28] Besse, Arthur, Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete, 10.
Springer-Verlag, Berlin, 1987.
[29] Bessieres, Laurent; Besson, Gerard; Maillot, Sylvain; Boileau, Michel; Porti, Joan. Ge-
ometrisation of 3-manifolds. EMS Tracts in Mathematics, 13. European Mathematical
Society (EMS), Ziirich, 2010.
[30] Bohm, Christoph; Wilking, Burkhard. Manifolds with positive curvature operators are space
forms. Annals of Math. 167 (2008), 1079-1097.
[31] Bokowski, Jiirgen; Sperner, Emanuel. Zerlegung konvexer Karper durch minimale Tren-
nfiachen. J. Reine Angew. Math. 311/312 (1979), 80-100.
[32] Brendle, Simon. Uniqueness of gradient Ricci solitons. Math. Res. Lett. 18 (2011), no. 3,
531-538.
[33] Brendle, Simon. Rotational symmetry of self-similar solutions to the Ricci fiow. Inventiones
Math. 194 (2013), 731-764.
[34] Brendle, Simon; Huisken, Gerhard; Sinestrari, Carlo. Ancient solutions to the Ricci fiow
with pinched curvature. Duke Math. J. 158 (2011), no. 3, 537-551.
[35] Brendle, Simon; Schoen, Richard. Manifolds with l/4-pinched curvature are space forms.
J. Amer. Math. Soc. 22 (2009), no. 1, 287-307.
[36] Brezis, Haim; Merle, Frank. Uniform estimates and blow-up behavior for solutions of
-b.u = V(x)e" in two dimensions. Comm. Partial Diff. Equations 16 (1991), 1223-1253.
[37] Bryant, Robert. Unpublished results on Ricci solitons.
[38] Buchert, Thomas; Carfora, Mauro. Regional averaging and scaling in relativistic cosmology.
Classical Quantum Gravity 19 (2002), no. 23, 6109-6145.
[39] Burago, Yu. D.; Zalgaller, V. A. Geometric inequalities. Translated from the Russian by
A. B. Sosinskiul. Grundlehren der Mathematischen Wissenschaften, 285. Springer Series in
Soviet Mathematics. Springer-Verlag, Berlin, 1988.
[40] Butzer, P. L.; Johnen, H. Lipschitz spaces on compact manifolds. J. Functional Analysis 7
(1971), 242-266.
[41] Buzzanca, Claudio. The Lichnerowicz Laplacian on tensors. (Italian) Boll. Un. Mat. Ital.
B (6) 3 (1984), 531-541.
[42] Cannon, James W.; Floyd, William J.; Kenyon, Richard; Parry, Walter R. Hyperbolic geom-
etry. Flavors of geometry, 59-115, Math. Sci. Res. Inst. Pub!., 31, Cambridge Univ. Press,
Cambridge, 1997.
[43] Cao, Huai-Dong. Deformation of Kahler metrics to Kahler-Einstein metrics on compact
Kahler manifolds. Invent. Math. 81 (1985), no. 2, 359-372.
[44] Cao, Huai-Dong. Existence of gradient Kahler-Ricci solitons, Elliptic and parabolic methods
in geometry. AK Peters, Wellesley, MA, 1996 , pp. 1- 16.
[45] Cao, Huai-Dong; Chen, Bing-Long; Zhu, Xi-Ping. Recent developments on Hamilton's
Ricci fiow. Surveys in differential geometry. Vol. XII. Geometric flows, 47-112, Int. Press,
Somerville, MA, 2008.
[46] Cao, Huai-Dong; Chen, Qiang. On locally conformally fiat gradient steady Ricci solitons.
Trans. AMS 364 (2012), 2377-2391.
[47] Cao, Huai-Dong; Hamilton, Richard S.; Ilmanen, Tom. Gaussian densities and stability for
some Ricci solitons. arXiv:math.DG/0404165.
[48] Cao, Huai-Dong; Zhou, De-Tang. On complete gradient shrinking Ricci solitons. J. Differ-
ential Geom. 85 (2010), 175 - 186.