BIBLIOGRAPHY 355
[49] Cao, Huai-Dong; Zhu, Xi-Ping. A complete proof of the Poincare and geometrization
conjectures-application of the Hamilton-Perelman theory of the Ricci fiow. Asian J. Math.
10 (2006), 165-498. Erratum. Asian J. Math. 10 (2006), 663.
[50] Cao, Xiaodong; Wang, Biao; Zhang, Zhou. On locally conj ormally fiat gradient shrinking
Ricci solitons. Comm. in Contemp. Math. 13 (2011), 1-14.
[51] Cao, Xiaodong; Zhang, Qi S. The conjugate heat equation and ancient solutions of the Ricci
fiow. Advances in Math. 228 (2011), 2891-2919.
[52] Carfora, Mauro. The conjugate linearized Ricci fiow on closed 3-manifolds. Ann. Scuola
Normale Superiore di Pisa, Classe di Scienze, Serie V, Vol. VIII, 2009 , 681-724.
[53] Carrillo, Jose A.; Ni, Lei. Sharp logarithmic Sobolev inequalities on gradient solitons and
applications. Comm. Anal. Geom. 17 (2009), 721-753.
[54] Casson, Andrew J.; Bleiler, Steven A. Automorphisms of surfaces after Nielsen and
Thurston. London Mathematical Society Student Texts, 9. Cambridge University Press,
Cambridge, 1988.
[55] Cecil, Thomas E.; Ryan, Patrick. Distance functions and umbilic submanifolds of hyperbolic
space. Nagoya Math. J. 74 (1979), 67-75.
[56] Chavel, Isaac. Isoperimetric inequalities. Differential geometric and analytic perspectives.
Cambridge Tracts in Mathematics, 145, Cambridge University Press, Cambridge, 2001.
[57] Cheeger, Jeff; Ebin, David G. Comparison theorems in Riemannian geometry. North-
Holland Mathematical Library, Vol. 9. North-Holland Publishing Co., Amsterdam-Oxford;
American Elsevier Publishing Co., Inc., New York, 1975.
[58] Cheeger, Jeff; Gromov, Mikhail. Collapsing Riemannian manifolds while keeping their cur-
vature bounded, I, J. Differential Geom. 23 (1986), 309-346.
[59] Cheeger, Jeff; Gromov, Mikhail. Collapsing Riemannian manifolds while keeping their cur-
vature bounded, II, J. Differential Geom. 32 (1990), 269-298.
[60] Cheeger, Jeff; Tian, Gang. On the cone structure at infinity of Ricci fiat manifolds with
Euclidean volume growth and quadratic curvature decay. Invent. Math. 118 (1994), 493-
571.
[61] Chen, Bing-Long. Strong uniqueness of the Ricci fiow. J. Differential Geom. 82 (2009),
363-382.
[62] Chen, Bing-Long; Xu, Guoyi; Zhang, Zhuhong. Local pinching estimates in 3 -dim[ensional]
Ricci fiow. Mathematical Research Letters 20 (2013), 845-855.
[63] Chen, Bing-Long; Zhu, Xi-Ping. Uniqueness of the Ricci fiow on complete noncompact
manifolds. J. Differential Geom. 74 (2006), 119 - 154.
[64] Chen, Chih-Wei. On the injectivity radius and tangent cones at infinity of gradient Ricci
solitons. arXiv: 1012.1217vl.
[65] Chen, Haiwen. Pointwise quarter-pinched 4-manifolds. Ann. Global Anal. Geom. 9 (1991),
161-176.
[66] Choptuik, M. Universality and Scaling in the Gravitational Collapse of a Massless Scalar
Field. Phys. R ev. Lett. 70 (1993), 9-12.
[67] Chow, Bennett. The Ricci fiow on the 2-sphere. J. Differential Geom. 33 (1991), no. 2,
325-334.
[68] Chow, Bennett; Chu, Sun-Chin, A geometric approach to the linear trace Harnack inequality
for the Ricci fiow. Math. Res. Lett. 3 (1996) 549-568.
[69] Chow, Bennett; Chu, Sun-Chin; Glickenstein, David; Guenther, Christine; Isenberg, Jim;
Ivey, Tom; Knopf, Dan; Lu, Peng; Luo, Feng; Ni, Lei. The Ricci fiow: Techniques and
applications. Part I: Geometric aspects. Mathematical Surveys and Monographs, 135, AMS,
Providence, RI, 2007.
[70] Chow, Bennett; Chu, Sun-Chin; Glickenstein, D avid; Guenther, Christine; Isenberg, Jim;
Ivey, Tom; Knopf, Dan; Lu, Peng; Luo, Feng; Ni, Lei. The Ricci fiow: Techniques and
applications. Part 11: Analytic aspects. Mathematical Surveys and Monographs, 144 , AMS,
Providence, RI, 2008.
[71] Chow, Bennett; Chu, Sun-Chin; Glickenstein, David; Guenther, Christine; Isenberg, Jim;
Ivey, Tom; Knopf, Dan; Lu, Peng; Luo, Feng; Ni, Lei. The Ricci fiow: Techniques and
applications. Part III: Geometric-analytic aspects. Mathematical Surveys and Monographs,
163 , AMS, Providence, RI, 2010.
[72] Chow, Bennett; Hamilton, Richard S. Constrained and linear Harnack inequalities for par-
abolic equations. Invent. Math. 129 (1997), 213-238.