1547845830-Classification_of_Quasithin_Groups_-_Volume_II__Aschbacher_

(jair2018) #1

1212


[Gol74]
[Gro02]

[GT85]

[GW64]

[Hig68]

[HM69]

[HW68]

[Jam78]

[Jan68]
[Jan69]
[Jan72]

[JLPW95]

[JW69]

[Kan79]

[Mas]

[Mas80]

[McC82]

[McL67]

[McL69]
[Mitll]

[MS]

[MS90]

[Par72]'

[Par76]


[PW70]


[RS80]

[Rud84]

[Ser80]
[Shu]

[Sim67]
[Smi75]

EXPOSITORY REFERENCES MENTIONED

D. Goldschmidt, 2-fusion infinite groups, Ann. of Math. 99 (1974), 70-117.
J. Grodal, Higher limits via subgroup complexes, Ann. of Math.(2) 155 (2002), 405-
457.
K. Gomi and Y. Tanaka, On pairs of groups having a common 2-subgroup of odd
indices, Sci. Papers Coll. Arts Sci. U. Tokyo 35 (1985), 11-30.
D. Gorenstein and J. Walter, The characterization of finite simple groups with dihedral
Sylow 2-subgroups, J. Algebra 2 (1964), 85-151,218-270,354-393.
G. Higman, Odd characterizations of finite simple groups, U. Michigan lecture notes,
77 pages, 1968.
G. 'Higman and J. McKay, On Janka's simple, group of order 50, 232, 960, Bull. London
Math. Soc. 1 (1969), 89-94.
M. Hall and D. Wales, The simple group of order 604,800, J. Algebra 9 (1968), 417-
450.
G. D. James, The representation theory of the symmetric groups, Lecture Notes in
Math., vol. 682, Springer-Verlag, Berlin, 1978, 156 pages.
Z. Janko, Some new simple groups of finite order, I, Symposia Math. 1 (1968), 25-64.
---,A characterization of the simple group G2(3), J. Algebra 12 (1969), 360-371.
___ , N onsolvable finite groups all of whose 2-local subgroups are solvable, i, J.
Algebra 21 (1972), 458-517.
C. Jansen, K. Lux, R. Parker, and R. Wilson, An Atlas of Brauer characters, London
Math. Soc. Monographs (new series), vol. 11, Oxford U. Press, Oxford, 1995, 327 pages.
z. Janko and S. K. Wong, A characterization of the Higman-Sims simple group, J.
Algebra 13 (1969), 517-534.
W. Kantor, Subgroups of classical groups generated by long root elements, Trans. Amer.
Math. Soc. 248 (1979), 347-379.
G. Mason, The classification of finite quasithin groups, typescript, U. California Santa
Cruz, about 1981 about 800 pages,.
___ , Quasithin groups, Finite Simple Groups II (Durham 1978) (New York) (M. J.
Collins, ed.), Academic Press, 1980, pp. 181-197.
P. McClurg, (roughly, on FF-modules for almost-simple groups), Ph.D. thesis, U. Cal.
Santa Cruz, about 1982.
J. McLaughlin, Some groups generated by transvections, Arch. Math. 18 (1967), 364-
368.
---,Some subgroups of SLn(F2), Illinois J. Math. 13 (1969), 108-115.
H. Mitchell, Determination of the ordinary and modular ternary linear group, Trans.
Amer. Math. Soc. 12 (1911), 207-242.
U. Meierfrankenfeld and B. Stellmacher, The generic groups of p-type, preprint, Mich.
St. U., about 1997; see http://www.math.msu.edu/""meier/CGP /QT/qt.dvi, 89 pages.
U. Meierfrankenfeld and G. Stroth, Quadratic GF(2)-modules for sporadic simple
groups and alternating groups, Commun. in Alg. 18 (1990), 2099-2139.
David Parrott, A characterization of the Tits' simple group, Canadian J. Math. 24
(1972), 672-685.
---, A characterization of the Rudvalis simple group, Proc. London Math. Soc. (3)
32 (1976), 25-51.
D. Parrott and S. K. Wong, On the Higman-Sims simple group of order 44, 352, 000,
Pacific J. Math. 32 (1970), 501-516.
M. A. Ronan and S. D. Smith, 2-Local geometries for some sporadic groups, The Santa
Cruz Conference on Finite Groups (Providence RI) (B. Cooperstein and G. Mason,
eds.), Proc. Symp. Pure Math., vol. 37, Amer.Math.Soc., 1980, pp. 283-289.
A. Rudvalis, A rank-3 simple group of order 214 · 33 · 53 · 7 · 13 · 29, I, J. Algebra 86
(1984), 181-218.
J.-P. Serre, Trees, Springer-Verlag, Berlin, 1980, 142 pages.
E. Shult, On the fusion of an involution in its centralizer, unpublished manuscript,
early 1970s.
C. C. Sims, Graphs and finite permutation groups, Math. z. 95 (1967), 76-86.
F. L. Smith, Finite simple groups all of whose 2-local subgroups are solvable, J. Algebra
34 (1975), 481-520.
Free download pdf