1547845830-Classification_of_Quasithin_Groups_-_Volume_II__Aschbacher_

(jair2018) #1

[Smi80]


[Smi81]


[Ste86]
[Ste92]


[Ste97]


[Str]
[Suz62]


[Suz64]


[Suz65]


[Tho68]


[Tim75]


[Tim78]


[Tit74]


[Tod66]


[Tut47]


[Wal69]


[Wei90]


[Won64a]
[Won64b]


[Yos]


EXPOSITORY REFERENCES MENTIONED 1213

Stephen D. Smith, The classification of finite groups with large extra-special 2-
subgroups, The Santa Cruz Conference on Finite Groups (Providence RI) (B. Cooper-
stein and G. Mason, eds.), vol. 37, Amer. Math. Soc., 1980, (Proc. Symp. Pure Math.),
pp. 111-120.
___ , A characterization of some Chevalley groups in characteristic two, J. of Al-
gebra 68 (1981), 390-425.
B. Stellmacher, Pushing up, Arch. Math. 46 (1986), 8-17.
___ , On the 2-local structure of finite groups, Groups, Combinatorics, and Geome-
try (Cambridge) (M. Liebeck and J. Saxl, eds.), Durham 1990 Proceedings, Cambridge
U. Press, 1992, pp. 159-182.
___ ,An application of the amalgam method: the 2-local structure of N-groups of
characteristic 2-type, J. Algebra 190 (1997), 11-67.
G. Stroth, The uniqueness case, unpublished MS, mid 1990s, 246 pages.
M. Suzuki, On a class of doubly transitive groups, Ann. of Math. (2) 75 (1962), 105-
145.
___ , On a class of doubly transitive groups II, Ann. of Math. (2) 79 (1964), 514-
589.
___ , Finite groups in which the centralizer of any element of order 2 is 2-closed,
Ann. of Math. 82 (1965), 191-212.
John G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable,
Bull. Amer. Math. Soc. 74 (1968), 383-437.
F. G. Timmesfeld, Groups with weakly closed TI-subgroups, Math. Z. 143 (1975),
243-278.
___ , Finite simple groups in which the generalized Fitting group of the centralizer
of some involution is extraspecial, Ann. of Math. 107 (1978), 297-369.
J. Tits, Buildings of spherical type and finite EN-pairs, Lecture Notes in Math., vol.
386, Springer-Verlag, Berlin, 1974, 299 pages.
J. Todd, A representation of the Mathieu group m24 as a collineation group, Annali
di Math. Pure et Appl. 71 (1966), 199-238.
W. T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947),
459-474.
D. B. Wales, Uniqueness of the graph of a rank-3 group, Pacific J. Math. 30 (1969),
271-276.
R. Weiss, Generalized polygons and s-transitive graphs, Finite Geometries, Buildings,
and Related Topics (New York) (W. Kantor, R. Liebler, S. Payne, and E. Shult, eds.),
Pingree Park CO 1988 Proceedings, Oxford U. Press, 1990, pp. 95-103.
W. Wong, A characterization of the Mathieu group Mi2, Math. Z. 84 (1964), 378-388.
___ , On finite groups whose 2-Sylow subgroups have cyclic subgroups of index 2,
J. Austral. Math. Soc. 4 (1964), 90-112.
S. Yoshiara, Radical 2-subgroups of the Monster and Baby Monster, ?? ?? (??),
preprint, Tokyo Women's Christian U., 2003.
Free download pdf