1549055384-Symplectic_Geometry_and_Topology__Eliashberg_

(jair2018) #1
418 J.E. MARSDEN, MECHANICS, DYNAMICS, AND SYMMETRY


  1. Ge, Z. and J.E. Marsden [1988] Lie-Poisson integrators and Lie-Poisson
    Hamilton-Jacobi theory, Phys. Lett. A 133 , 134 - 139.

  2. Getz, N.H. and J. E. Marsden [1995] Control for an autonomous bicycle, In-
    ternational Conference on Robotics and Automation, IEEE, Nagoya, Japan,
    May, 1995.

  3. Gillilan, R. and K. Wilson [1992]. Shadowing, rare events, and rubber bands:
    A variational Verlet algorithm for molecular dynamics. J. Chem. Phys., 97,
    1757-1772.

  4. Gjaja, I. and D .D. Holm [1996] Self-consistent wave-mean flow interaction
    dynamics and its Hamiltonian formulation for a rotating stratified incom-
    pressible fluid, Physica D , 98 (1996) 343-378.

  5. Golubitsky, M., I. Stewart, and D. Schaeffer [1988] Singularities and Groups
    in Bifurcation Theory. Vol. 2, Applied Mathematical Sciences 69 , Springer-
    Verlag.


86. Gonzalez, 0. [1996] Design and Analysis of Conserving Integrators for Non-


linear Hamiltonian Systems with Symmetry, Thesis, Stanford University, Me-
chanical Engineering.

87. Gonzalez, 0. [1996]. Time integration and discrete Hamiltonian systems. J.


Nonlinear Sci. 6 , 449-468.


  1. Gonzalez, 0. and J .C. Simo [1995] On the Stability of Symplectic and Energy-
    Momentum Algorithms for Nonlinear Hamiltonian Systems with Symmetry.
    Submitted to Comp. Meth. Appl. Mech. Eng.

  2. Gotay, M., J. Isenberg, and J.E. Marsden [1997] Momentum Maps and the
    Hamiltonian Structure of Classical R elativistic Field Theories, I. preprint.

  3. Greenspan, D. [1974] Discrete Numerical Methods in Physics and Engineer-
    ing. Academic Press.


91. Greenspan, D. [1984] Conservative numerical methods for x = f(x), J. Comp.


Phys. 56 , 21-48.
92. Grillakis, M., J. Shatah and W. Strauss [1987] Sta bility theory of solitary
waves in the presence of symmetry. I & II. J. Funct. Anal. 74, 160-197 and
94 (1990), 308-348.


  1. Gozzi, E. and W.D. Thacker [1987] Classical adiabatic holonomy in a Grass-
    mannian system. Phys. Rev. D 35 , 2388-2396.

  2. Guckenheimer , J. and A. Mahalov [1992], Resonant triad interactions in sym-
    metric systems, Physica D 54, 267-310.

  3. Guichardet, A. [1984] On rotation and vibration motions of molecules, Ann.
    Inst. H. Poincare 40 , 329 - 342.

  4. Guillemin, V., E. Lerman and S. Sternberg [1996] Symplectic Fibrations and
    Multiplicity Diagrams. LMS Lecture Note Series, Cambridge University Press.

  5. Guillemin, V. and S. Sternberg [1978] On the equations of motions of a classic
    particle in a Yang-Mills field and the principle of general covariance. Hadronic
    J. 1 , 1-32.

Free download pdf