1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1
8 .2 • TRIGONOMETRIC INTEGRALS 30 5

We solve for cos 28 and sin 28 to obtain the substitutions
1
and sin 28 =
2

i (z^2 - z-^2 ).


Using the identity for cos 28 along with Substitutions (8-4) and (8-5), we rewrite
the integral as

J


! (z2 + z -2) dz= J i(z4+1) dz= J f (z)dz,


5-4 (z+z-^1 ) iz 2z2(z- 2) (2z- 1)

ct (O)^2 ct (OJ ct (OJ


where f (z) = 2 z ~~:~~•-!). The singularities of J lying inside Ci(O) are poles
located at the points 0 and ~-We use Theorem 8.2 to get the residues:

R [f OJ 1. d^2 J ( ) 1. d. ( z


4
+ 1)

es ' = z-o im d-z z z = z-o lill -d z i2 (2 z (^2) - (^5) z + 2)


. .4z^3 (2z^2 - 5z+2) - (4z- 5) (z^4 +1) 5i


= hmi = -

.-o 2 (2z2 - 5z + 2)^2 8


and

[


l]. ( 1). i(z
4
+1) 17i
Res f, -
2

= hm z - -

2

f (z) = h m

4 2
( 2 ) = --
2
·
z-~ z-i Z z- 4

Therefore, we conclude that

[

2

" cos28d8 = 2 7ri (5i _ 17i) = ~-

}0 5-4cos8 8 24 6


-------~EXERCISES FOR SECTION 8.2


Use residues to find

1 r2" 1 dfJ
· Jo 3 cos 8 + 5 ·


  1. r2" 1 dfJ.
    Jo 4sin8+ 5


3 Ii2" 1 dfJ

-^0 15sin^2 8 + 1 ·


r2" 1


  1. Jo 5cos2B+4d8.

Free download pdf