ANSWERS 621
Section 12.3. Vibrations in Mechanical Systems: page 535
(^00) (-1rs (^00) (-1jA(n (^2) - 1).
la. Up (t) = L:: n•+ 7 n 2 + 1 cos(nt) + L:: n•+ 1 n•+n sm(nt).
n=l n=l
Section 12.4. The Fourier Transform: page 540
j (U (t )) = s~ww.
~(U (t )) = 1 -;.~~w = 2s~: 2 'f.
(^5). ) "' ( e -<>ltl ) _ - .-(a. J<>+I w1).
7.~(~)={
i sinw for
- 2 - lwl ~ ?r,
0 for lwl > 1r.
- j(~) = {
l -lwl for
4ir lwl ~ 1,
0 for lwl > 1.
Section 12.5. The Laplace Transform: page 548
- Use s = u + iT and the integ ral J e-(<1+ir)t d t = .-·• 1 -<Tc
(.,+r•in('T't)) +
i e-•• 1 .,.c"!.\;~~t"•in('rt)) = u(t) + iv(t) and supply the details showing t hat
Jim u(t) = 0 and Jim v(t) = 0. T hen C (1) = fi
00
e-<<T+ i.,.)tdt = 0 +Qi=
t - + oo t-+ oo 0
- 1 I
cr+i'r = $·
3. [, (f (t)) = ~ - ce:•• - •:; •.
1 e"- •
5. [, (f (t)) = s-<> - s-a.
C (3t^2 - 4t+5) = f!r-ti + ~-
c ( e2t-3) = :=~.
11.J.., r (( t + 1)4) -_ ~^24 + .. 2 4 +^1 .,^2 +:;v^4 +,I.
- c-^1 (.2!25) =! sin 5t.
15. c-^1 (^1 +>;-•
3
) = - 1 + t + ~-