1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1
622 ANSWERS

Section 12 .6. Laplace Transforms of Derivatives and Integrals:
page 552


1. .C (sint) = 8 2~ 1.

3. .C (sin^2 t) = s(sf+4).



  1. .c- 1 ( s(s - 4) l ) = _! 4 + !e 4 4t.




  2. .c-^1 ( • 2 (;+ 1 )) = t - 1 +ct.




  3. y(t) = 2cos3t+3sin3t.




11. y(t) = - 2 + 2cos2t+ sin2t.

13. y(t) = 2 +et.


  1. y(t) = -1-~e-t +~et= -1 + sinht +et.

  2. y(t) = e-^2 t + et.


Section 12. 7. Shifting Theorems and the Step Functions: page 557

1. .C (et - tet) = (s:::h2 + .~1.

3. .C (eat cosbt) = (s-:)f+b•.


  1. f(t) = .c-^1 (.2~~;+s) = e-^2 t cost.


(^7). f(t) = .c-^1 ( (s+2J2H •+^3 ) = e-^2 t cost+ e-^2 tsint.
9. .C ( U 2 (t) (t - 2)
2
) =^2 ·.~··.


11. .C (U3" (t)sin(t- 37r)) = ~;~;.



  1. .C (f(t) = ~(l - 2e-• + 2e-^2 • - e-^3 •).




  2. .c-^1 ( .-·~·-") = U1 (t) + U2 (t).




1 7. y(t) = - e- tcost.


  • t. t



  1. y(t) = 2eT Slll 2·

  2. y(t ) = t^3 e- t.

  3. y(t) = [1 -o(t -~)) sint + (1-sint)U~ (t).

Free download pdf