236 Isobaric ensembles
∂H
∂hαγ
=−
∑
i
∑
μ,ν,λ
πi,μπi,ν
2 mi
∑
ρ,σ
(
h−μρ^1
∂hρσ
∂hαγ
h−σλ^1 h−νλ^1 +h−μλ^1 h−νρ^1
∂hρσ
∂hαγ
)
h−σλ^1
+
∂
∂hαγ
U(hs 1 ,...,hsN). (5.7.22)
Using∂hρσ/∂hαγ=δαρδσγand performing the sums overρandσ, we find
∂H
∂hαγ
=−
∑
i
∑
μ,ν,λ
πi,μπi,ν
2 mi
∑
ρ,σ
(
h−μα^1 h−γλ^1 h−νλ^1 +h−μλ^1 h−να^1 h−γλ^1
)
+
∂
∂hαγ
U(hs 1 ,...,hsN). (5.7.23)
Since
∂
∂hαγ
U(hs 1 ,...,hsN) =
∑
i
∑
μ,ν
∂U
∂(hsi)μ
∂hμν
∂hαγ
si,ν
=
∑
i
∑
μ,ν
∂U
∂(hsi)μ
δαμδγνsi,ν
=
∑
i
∂U
∂(hsi)α
si,γ, (5.7.24)
we arrive at the result
∂H
∂hαγ
=−
∑
i
∑
μ,ν,λ
πi,μπi,ν
2 mi
∑
ρ,σ
(
h−μα^1 h−γλ^1 h−νλ^1 +h−μλ^1 h−να^1 h−γλ^1
)
+
∑
i
∂U
∂(hsi)α
si,γ. (5.7.25)
To obtain the pressure tensor estimator, we must multiply byhβγand sum overγ.
When this is done and the sum overγis performed according to
∑
γhβγh
− 1
γλ=δβλ,
then the sum overλcan be performed as well, yielding
∑
γ
hβγ
∂H
∂hαγ
=−
∑
i
∑
μ,ν
πi,μπi,ν
2 mi
∑
ρ,σ
(
h−μα^1 h−νβ^1 +h−μβ^1 h−να^1
)
+
∑
i
∑
γ
∂U
∂(hsi)α
hβγsi,γ. (5.7.26)
We now recognize that
∑
απi,μh
− 1
μα=pi,α,
∑
νπi,νh
− 1
νβ=pi,β,∂U/∂(hsi) =∂U/∂ri
and
∑
γhβγsi,γ=ri,β. Substituting these results into eqn. (5.7.26) and multiplying
by− 1 /det(h) gives