236 Isobaric ensembles
∂H
∂hαγ=−
∑
i∑
μ,ν,λπi,μπi,ν
2 mi∑
ρ,σ(
h−μρ^1∂hρσ
∂hαγh−σλ^1 h−νλ^1 +h−μλ^1 h−νρ^1∂hρσ
∂hαγ)
h−σλ^1+
∂
∂hαγU(hs 1 ,...,hsN). (5.7.22)Using∂hρσ/∂hαγ=δαρδσγand performing the sums overρandσ, we find
∂H
∂hαγ=−
∑
i∑
μ,ν,λπi,μπi,ν
2 mi∑
ρ,σ(
h−μα^1 h−γλ^1 h−νλ^1 +h−μλ^1 h−να^1 h−γλ^1)
+
∂
∂hαγU(hs 1 ,...,hsN). (5.7.23)Since
∂
∂hαγ
U(hs 1 ,...,hsN) =∑
i∑
μ,ν∂U
∂(hsi)μ∂hμν
∂hαγ
si,ν=
∑
i∑
μ,ν∂U
∂(hsi)μδαμδγνsi,ν=
∑
i∂U
∂(hsi)αsi,γ, (5.7.24)we arrive at the result
∂H
∂hαγ=−
∑
i∑
μ,ν,λπi,μπi,ν
2 mi∑
ρ,σ(
h−μα^1 h−γλ^1 h−νλ^1 +h−μλ^1 h−να^1 h−γλ^1)
+
∑
i∂U
∂(hsi)αsi,γ. (5.7.25)To obtain the pressure tensor estimator, we must multiply byhβγand sum overγ.
When this is done and the sum overγis performed according to
∑
γhβγh− 1
γλ=δβλ,
then the sum overλcan be performed as well, yielding
∑γhβγ∂H
∂hαγ=−
∑
i∑
μ,νπi,μπi,ν
2 mi∑
ρ,σ(
h−μα^1 h−νβ^1 +h−μβ^1 h−να^1)
+
∑
i∑
γ∂U
∂(hsi)αhβγsi,γ. (5.7.26)We now recognize that
∑
απi,μh− 1
μα=pi,α,∑
νπi,νh− 1
νβ=pi,β,∂U/∂(hsi) =∂U/∂ri
and
∑
γhβγsi,γ=ri,β. Substituting these results into eqn. (5.7.26) and multiplying
by− 1 /det(h) gives