1549380323-Statistical Mechanics Theory and Molecular Simulation

(jair2018) #1
Trotter theorem 669







[(


PˆhQˆh

)n
−Rˆnh

]


ψ






∣=








(


PˆhQˆh−Rˆh

)


Rˆ(n−1)hψ

+PˆhQˆh

(


PˆhQˆh−Rˆh

)


Rˆ(n−2)hψ

+···+


(


PˆhQˆh

)n− 1 (
PˆhQˆh−Rˆh

)


ψ








∣. (C.15)


Recall that for ordinary vectorsa,b, andc, such thata=b+c, the triangle inequality
|a|≤|b|+|c|holds. Similarly, we have








[(


PˆhQˆh

)n
−Rˆnh

]


ψ






∣≤








(


PˆhQˆh−Rˆh

)


Rˆ(n−1)hψ







+







∣PˆhQˆh

(


PˆhQˆh−Rˆh

)


Rˆ(n−2)hψ






∣+···. (C.16)


On the right, there arenterms, all of orderO(h). Thus, the right side varies as
nO(h) =nO(t/n). Asn→∞,nO(t/n)→0. Hence,


lim
n→∞







[(


PˆhQˆh

)n
−Rˆnh

]


ψ






∣→ 0 , (C.17)


which implies eqn. (C.1).

Free download pdf