1549901369-Elements_of_Real_Analysis__Denlinger_

(jair2018) #1
2.4 Divergence to Infinity 83

Thus, we want to find an no E N 3
3n- 2
n 2:: no :::;, n 2:: 24 and -
6




  • 100; i.e.,





n 2:: no :::;, n 2:: 24 and 3n - 2 > 600; i.e.,


n 2:: no :::;, n 2:: 24 and 3n > 602.

This will be satisfied if n ;::: 201. Thus, take no = 201.
3n^2 - 2n
(b) We want an n 0 EN 3 n > n 0 ::::? > M. As shown above,


  • 5n+ 23
    3n^2 - 2n 3n - 2
    5n + 23 > -6-, if n;::: 24.
    Thus, we want to find an no E N 3
    3n- 2
    n 2:: no:::;, n 2:: 24 and -
    6



  • M; i.e.,
    n 2:: n 0 :::;, n 2:: 24 and 3n - 2 > 6M; i.e.,
    n 2:: no:::;, n 2:: 24 and 3n > 6M + 2.





This will be satisfied if n > 24 an d n > 6M +2 Th k
3

. us, we ta e no >


{
max 24, 6M + 2}
3


. D
. (3n


2
Example 2.4.3 Prove that hm - 2n)
23

= +oo.
n--->oo 5n +
Solution: Let M > 0. By the Archimedean property, 3 no E N 3 no >

{
max 24, 6M +2}
3


. Then,
6M+2
n 2:: no :::;, n >
3


and n 2:: 24

:::;, 3n > 6M + 2 and n ;::: 24


3n- 2
:::;, -
6




  • M and n ;::: 24





3n^2 - 2n
:::;,
6

n > M and n ;::: 24


* 3n^2 - 2n 3n^2 - 2n M
5n + 23 > 6n >
Free download pdf