298 Chapter 6 • Differentiable Functions
Proof. Let f(x) =ax + b. For arbitrary Xo E IR,
lim _f-'---(x--'--)_-_f-'(_xo-'-) = lim (ax+ b) - (ax^0 + b)
x-->xo x - Xo X-->Xo x - Xo
1
. ax - axo
= lffi
x-->xo x - x 0
= lim a(x - xo) =a.
X-->Xo x - Xo
Therefore, f is differentiable at xo and f' ( x) = a. •
Corollary 6.1. 3 (a) The derivative of a constant function is 0. More precisely,
if f is constant on a neighborhood of xo E IR, then f' (xo) = 0.
(b) The function f ( x) = x is difjerentiable everywhere, and f' ( x) = 1.
Example 6.1.4 The function f(x) = lxl is differentiable at every xo except 0.
Proof. Consider the function f(x) = lxl. Let xo ER
Case 1 (xo > 0): Then
lim f(x) - f(xo) = lim lxl - lxol
x-->xo x - xo x-->xo x - x 0
X-Xo
= lim --since x > 0 as x ____, xo > 0
x-->xo x - Xo
= 1.
Thus, when xo > 0, f'(xo) = 1.
y
x
Figure 6.1