6.1 The Derivative and Differentiability 299
Case 2 (xo < 0): Then
1
. f(x) - f(xo)
lm 1
. im---lxl - lxol
x-+xo x - Xo x-+xo x - Xo
- x-(-xo)
= lim since x < 0 as x ---+ xo < 0
x-+Xo x - Xo
= lim -(x - xo)
x-+xo x - x 0
= -1.
Thus, when xo < 0, f'(xo) = -1.
Case 3 (xo = 0): Then
lim _f (_x_) -_f (_x_o) = lim lxl - 0
x-+O X - Xo x-+0 X - 0
= lim l:'.l, which does not exist.
x-+O X
(See Exercise 4.3.l (a).)
Thus, the function f(x) = lxl is not differentiable at 0. D
Example 6.1.5 The function f(x) = ..jX is differentiable on (0, +oo), and
't:/xo E (0, +oo), f'(xo) = ~·
2yXO
Proof. Let f(x) = ..jX on (0, +oo), and let xo E (0, +oo). Then,
lim _f (_x_) _-_!_( x_o_) = lim ..jX -ftO
x-+xo x - Xo x-+xo x - Xo
1
. ..jX - ftO
= im
X-+Xo ( ..jX - ftQ) ( ..jX + ftQ)
. 1
= hm
X-+Xo ..jX + ftO
(since ..jX - ftO -::/-0)
1 1
since xo -::/-0. D.
2ft0
Sometimes Definition 6.1.1 is less convenient to use than another, equiva-
lent, definition that is based on the following observation:
If g is any function, and xo E JR is any cluster point of 'D(g), then
lim g(x) = L ~ lim g(x 0 + h) = L.
X-+Xo h-+0