1549901369-Elements_of_Real_Analysis__Denlinger_

(jair2018) #1
438 Chapter 7 Iii The Riemann Integral

(g)^11 -d^1 x^15 1 12 1
x3 (h)^2 (x - 3)2 dx (i) -2 --dx x - l
-1

(j)^12 dx
-1 x2 +ex

(k) 11 exdx
0 Vx

(1) 1


1
x lnxdx

1 "1


2
(m) sinx -YX dx
0 x

(n)^11 -^1
1
-dx
0 x nx


  1. Without using the arcsine function, use the comparison test to prove that


1


1
h converges.


  1. Determine the convergence or divergence of 1


1
x(l~xx) 2.


  1. Prove that lim ;·c ( 2 x ) 2 dx = 0. Does this imply that
    c-->1- -c X -l


1: (x 2 ~ l) 2 dx converges to 0? Graph the function f(x) = (x 2 ~ l) 2
over the interval (-1, 1) and explain what is going on.

IMPROPER INTEGRALS OF TYPE II


Definition 7.8.9 Suppose a E IR and Vb > a, f is integrable on [a, b]. Then


we call J,+
00
a f an improper integral of type II. If b-->+oo lim t a f exists, we say


that fa+oo f converges, and write


f,+
00
f = lim t f.
a b-->+oo a

Otherwise, we say that fa+oo f diverges.


Definition 7 .8. 10 Suppose b E IR and Va < b, f is integrable on [a, b]. Then


we call J~ oo f an improper integral of type II. If a-t-oo lim t a f exists, we say


that J~ 00 f converges, and write


J~ oo f = a-t-oo lim t a f.


Otherwise, we say that J~ 00 f diverges.

Free download pdf