1549901369-Elements_of_Real_Analysis__Denlinger_

(jair2018) #1

(^474) Chapter 8 • Infinite Series of Real Numbers
8.
v'2 v'4 v'6 JS JI5
3. 5 + 5. 7 + 7. 9 + 9. 11 + 11. 13 + ...
1 1·2 1 ·2· 3 1 ·2·3·4



  1. 3 + 3.5 +~ + 3 .5.7.9 +···


1 2 3 4 5
-~~+ + + + +···
~ ~ ff.D #5-6 vim

10.

1 4 27 64 3, 125
-+-+-+-+--+···
e e^2 e^3 e^4 e^5

11.

12.
1 1 1 1
ln2 + (ln3)^2 + (ln4)3 + (ln5)4 + · · ·

In Exercises 13 - 30, use tests given in Sections 8.1 and 8.2 to determine whether
the series converges or diverges.


13. ~~
L..., n^2 - 5
n=l
~lnn


  1. L...,- 2
    n=2 n

  2. f ln~
    n=2 n


19. f^1 + cosn
n=l sin
2
n
00


  1. '"'!!'.._
    L..., en
    n=l
    oo I

  2. '"'!!:.: L..., en
    n=l

  3. ~sinn(~)


oo ( )2n


  1. ~ n3~ 1


00 1
14. '"' L..., -----,,3n 2 --- lOn
n=l
16. f lnn
n=2 5n


  1. f fa
    n= 2 lnn
    20 ~^7 fa
    · ~ n^2 + 6ifri
    00 3

  2. '"'!2:_
    L..., 3n
    n=l

  3. f ln(~3)
    n
    n=2

  4. oo (3n + 5)n/ 2
    2= 2n+1
    n=l

  5. ~cosn (n
    2
    :


1
)

1 1 1 1 1 1 1 1
~.l+~+~+~+w+~+w+~+~+···

1 1 1 1 1 1 1 1 1


  1. 22 + 1 + 42 + 32 + 62 + 52 + 32 + 72 + 102 + 92 + ...


00 1


  1. Prove that ~ n(ln n)P converges if and only if p > 1.

Free download pdf