1550078481-Ordinary_Differential_Equations__Roberts_

(jair2018) #1
Applications of Systems of Equations 473

on the interval 0 :::; t :::; 10 days for the initial conditions

(i) So = 500, Io = 5, Ro = 0 (ii) So = 100, Io = 100, Ro = 0

In each case, display S, I, and Ron a single graph and display a phase-plane

graph of I versus S.

SOLUTION
(i) Identifying S with Yi, I with Y2, and R with y3, we ran SOLVESYS by

setting n = 3, fi(t, Yi, Y2, y3) = -.005yiy2, h(t, Yi, Y2, y3) = .005YiY2 - .7y2,

and f3(t, Yi, y2, y3) = .7y2. We input the interval of integration as [O, 10]

and input the initial conditions: Yi (0) = 500, Y2 (0) = 5, and y3 (0) = 0.

After integration was completed, the graph of S , I, and Ron the rectangle

0 :::; t :::; 10 and 0 :::; S, I, R :::; 500 shown in Figure 10 .17 was displayed on the
monitor. Notice that S decreases monotonically from 500 to approximately 15
and R increases monotonically from 0 to 485. Also observe that I increases
monotonically from 5 to a maximum value of approximately 190 when t is
approximately 3 days and then I decreases monotonically to 5 as t approaches
10 days. Since I increases before decreasing, an epidemic occurs.


400

300

200

100

o~~::__~~~~==:=:::=::'.::::::::=:;~~
0 2 4 6 8

Figure 10. 17 A Graph of S(t), I(t), and R(t) for System (6)
for Initial Conditions (i)

10

Since we still wanted to display a phase-p lane graph of I versus S, we
indicated to SOLVESYS that we wanted S(t) assigned to the horizontal axis
and I(t) assigned to the vertical axis and that we wanted the graph displayed

Free download pdf