Integration
By Corollary 7.13 we have
or
f(() d( = 0
(-zo
f(()d( - ~ J f(()d(
( -zo - 27ri ( - zo ·
r(r)
= f(zo) J
27ri
--+-d(^1 J
( - Zo 27ri
r(r)
f(() - f(zo) d(
(-zo
481
r(r)
(7.18-2)
By the continuity if f at zo, given E > 0 there exists 8 > 0 such that
If(() - f(zo)I < e whenever IC -zol = r < 8. Hence
I
~ J f(()-f(zo) d(I::::; _e L(r) < E
27ri ( - zo 27rr
r(r)
so the last term in (7.18-2) tends to zero as r --+ 0.
Also, if we let zi = z 0 + reiti, z 2 = z 0 + reit^2 , we have
1 J d( 1 1t
2
- --= - dt= -(t2-ti)^1
27ri ( - Zo 27!" ti 27!"
r(r)
Thus (7.18-2) yields
1 j f(() d( = f(zo) (t2 -ti)+ 11(r)
27ri ( - Zo 27r
C1(r)
where 17(r) --+ 0 as r --+ O, and it follows that
(PV)-
2
1
. J ~(() d( = lim [ f(
2
zo) (t2 -ti)+ 17(r)] =
2
1
>.(zo)f(zo)
7ri - Zo r->O 7r 7r
c
7.19 CAUCHY'S INTEGRAL FORMULA FOR
FUNCTIONS ANALYTIC IN A HALF-PLANE
Theorem 7.27 Let f be analytic for Rez >a, and suppose that
A