482 Chapter 7
for JzJ large enough, where A > 0 and m > 0 are real constants. Then if
b > a and Re z > b, we have
.f(z) =(PV) [-~ fb+ioo f(()d(l
27r Jb-ioo ( - Z
1. 1b+iA f(()d(
= --hm
27ri >.--+oo b-i>. ( - Z
(7.19-1)
Proof Choose A> max {J RezJ, J ImzJ} so that the given z is contained in
the rectangle
{(x,y): b~x~.A,-.A~y~.A}
and let C be the boundary of this rectangle described once in the positive
direction, L = {z: z = b -it, -A~ t ~.A}, and C 1 = C - L (Fig. 7.25).
By the classical Cauchy's formula
f(z) = ~ J f(()d(
. 27ri ( - z
c
= - _1 lb+i>. f(()d( + _1 J f(()d(
27ri b-i>. ( - z 27ri ( - z
(7.19-2)
C1
y ,b+iA.- A.+ iA.
I
I • z
I
I
I
I '
I
(^0) I ex b A. x
I
I
I
I
I L
I C1
I
b - iA. A. - iA.
Fig. 7.25