1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1
Integration 483

For ( E C 1 and .>. sufficiently large, we have

A 2A


= IClm+lll - z/(I < .>.m+i


since ICI ;::: .>.for ( E C1 and lz/(I < % for.>. large enough, i.e., for.>. > 2lzl.

Hence

J


f ( () d( < ~ (4.>. - 2b) =^2 A (4 - 2! ) ~ 0
' - z - A m+l Am A
C1
as .>. ~ oo. Thus letting .>. ~ oo in (7.19-2), we obtain (7.19-^0 1).
If we put ( = b + iy in (7.19-1), the formula can be written in the form

J(z) = - ]_ J+oo J(b: iy) dy


27r -oo b + iy - z


(7.19-3)

In fact, since the integrand is a continuous function of y and

I


f(b+iy) I A'
b + iy - Z < IYim+l

for IYI > y 0 > 0, the improper integral converges to a value that is the

same as its principal value.

Exercises 7.3


  1. If C: z = i + 3eit, 0 :::=; t :::=; 27r, evaluate each of the following integrals.
    (a) J 2z2 -z+3 dz (b) J e-z dz
    z+l z
    c c


(c) J cos27rz dz (d) J sin2z. dz


3z -1 2z - i
c c
( e) J ( z + 1) dz ( f) J sin z dz
(z2 - 4)(z + 4) z^2 - 2z
c c

2. If C: z = 2eit, 0 :::=; t:::; 47r, evaluate each of the following:


(a) j ~dz (b) j z


3
+ z :-
3
dz
z4 -1 z - i
c c

J


ez cos z J ez-^1 dz


(c) (z - i7r)(z - %i7r) dz (d) z(z^2 -1)
c c
Free download pdf