1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1

696


as R -t oo uniformly for all z E r+. Hence letting R -t oo in


J


R xeiax J zeiaz 1
2 b2 dx + 2 b2 dz = 27ri. -2 e -ab
-RX + Z +
r+

we obtain


or


j


+oo xeiax. -ab
-oo x^2 + b^2 dx = ?rze

j


+oo x cos ax d · j+oo x sin ax d _. -ab

2 b2 X + z 2 b2 X - 7rZe
-oo x + ' -oo x +

By equating real and imaginary parts in (9.11-16), we find that


1


+^00 x cos ax _

2 b2dx-O

-oo x +
x s1nax d _ -ab
j

+oo.
2 b2 x - ?re
-oo x +

Chapter 9

(9.11-16)

(9.11-17)

(9.11-18)

The result in (9.11-17) is obvious since the integrand is an odd function.
The integrand in (9.11-18) is even, and since the integral converges in the
ordinary sense (not only as a principal value), we have


Exercises 9.4


Show that:


1


(^00) x sin ax d _ 1 -ab
2 b2 x - -?re
0 x + 2


1. 1


00

x 4 d: 1 = 2~^2 · 1


00
x 6 d: 1 = i

(9.11-18')

3 1


00

(x^2 +l)dx = 77r


· lo (x^2 + 4)(x^2 + 9) 60


4 1


00

(x^2 +4)dx = 77r

· lo (x^2 + l)(x^2 + 9) 24


5 1


00

dx - 7r (a> O,b > O,a-:/= b)


• 0 (x^2 +a^2 )(x^2 +b^2 ) - 2ab(a+b)

1


00

dx 7r 1


00
x^2 dx 7r


  1. ( 2 2)2 = -4 3 (a> 0) 7. ( 2 2)3 = 16a3 (a> 0)


0 x +a a 0 x +a

8 loo dx = 7r(2a+b) (a> O,b > 0)



  • 0 (x^2 + a^2 )^2 (x^2 + b^2 ) 4a^3 b(a + b)^2
    9 loo xdx - -~


• _ 00 (x^2 +1)(x^2 +2x+5) - 20

Free download pdf