104 Multivariate Distributionsx 2x 1 = 0x 1 = 1x 2 = 1(0, 0) x 2 = 0x 1SFigure 2.2.2:The support of (X 1 ,X 2 ) of Example 2.2.3.ofT:
x 1 =0 into 0=^12 (y 1 +y 2 )
x 1 =1 into 1=^12 (y 1 +y 2 )
x 2 =0 into 0=^12 (y 1 −y 2 )
x 2 =1 into 1=^12 (y 1 −y 2 ).Accordingly,T is shown in Figure 2.2.3. Next, the Jacobian is given by
J=∣ ∣ ∣ ∣ ∣ ∣ ∣
∂x 1
∂y 1∂x 1
∂y 2
∂x 2
∂y 1∂x 2
∂y 2∣ ∣ ∣ ∣ ∣ ∣ ∣=∣ ∣ ∣ ∣ ∣ ∣
1
21
2
1
2 −1
2∣ ∣ ∣ ∣ ∣ ∣=−1
2.Although we suggest transforming the boundaries ofS, others might want to
use the inequalities
0 <x 1 <1and0<x 2 < 1
directly. These four inequalities become
0 <^12 (y 1 +y 2 )<1and0<^12 (y 1 −y 2 )< 1.It is easy to see that these are equivalent to
−y 1 <y 2 ,y 2 < 2 −y 1 ,y 2 <y 1 y 1 − 2 <y 2 ;and they define the setT.
Hence, the joint pdf of (Y 1 ,Y 2 )isgivenbyfY 1 ,Y 2 (y 1 ,y 2 )={
fX 1 ,X 2 [^12 (y 1 +y 2 ),^12 (y 1 −y 2 )]|J|=^12 (y 1 ,y 2 )∈T
0elsewhere.