2.2. Transformations: Bivariate Random Variables 105y 2(0, 0) y 1y 2 = y 1 y 2 = 2 – y 1y 2 = – y 1 y 2 = y 1 – 2TFigure 2.2.3:The support of (Y 1 ,Y 2 ) of Example 2.2.3.The marginal pdf ofY 1 is given byfY 1 (y 1 )=∫∞−∞fY 1 ,Y 2 (y 1 ,y 2 )dy 2.If we refer to Figure 2.2.3, we can see that
fY 1 (y 1 )=⎧
⎪⎨⎪⎩∫y 1
−y 11
∫^2 dy^2 =y^10 <y^1 ≤^1
2 −y 1
y 1 − 21
2 dy^2 =2−y^11 <y^1 <^2
0elsewhere,which agrees with expression (2.2.2) of Example 2.2.2. In a similar manner, the
marginal pdffY 2 (y 2 )isgivenby
fY 2 (y 2 )=⎧
⎪⎨⎪⎩∫y 2 +2
−y 21
∫^2 dy^1 =y^2 +1 −^1 <y^2 ≤^0
2 −y 2
y 21
2 dy^1 =1−y^20 <y^2 <^1
0elsewhere.Example 2.2.4.LetY 1 =^12 (X 1 −X 2 ), whereX 1 andX 2 have the joint pdffX 1 ,X 2 (x 1 ,x 2 )={ 1
4 exp(
−x^1 + 2 x^2)
0 <x 1 <∞, 0 <x 2 <∞
0elsewhere.LetY 2 =X 2 so thaty 1 =^12 (x 1 −x 2 ),y 2 =x 2 or, equivalently,x 1 =2y 1 +y 2 ,x 2 =
y 2 , define a one-to-one transformation fromS={(x 1 ,x 2 ):0<x 1 <∞, 0 <x 2 <
∞}ontoT ={(y 1 ,y 2 ):− 2 y 1 <y 2 and 0<y 2 <∞, −∞<y 1 <∞}.The
Jacobian of the transformation is
J=∣
∣
∣
∣21
01∣
∣
∣
∣=2;