562 12.CONTINUOUSLATENTVARIABLES
chapter,weshallconsidertechniquestodetermineanappropriatevalueofIV!from
thedata.
Tobeginwith,considertheprojectionontoa one-dimensionalspace(M= 1).
Wecandefinethedirectionofthisspaceusinga D-dimensionalvectorUl,which
forconvenience(andwithoutlossofgenerality)weshallchoosetobea unitvector
sothatufUl = 1 (notethatweareonlyinterestedinthedirectiondefinedbyUl,
notinthemagnitudeofUlitself).EachdatapointXnisthenprojectedontoa scalar
valueufXn.Themeanoftheprojecteddataisufxwherex is thesamplesetmean
givenby
(12.1)
andthevarianceoftheprojecteddatais givenby
whereS is thedatacovariancematrixdefinedby
1 N
S= -NLJ"(xn- x)(xn- x)T.
n=l
(12.2)
(12.3)
AppendixE
WenowmaximizetheprojectedvarianceUfSUlwithrespecttoUl.Clearly,thishas
tobea constrainedmaximizationtopreventIlulll.....00.Theappropriateconstraint
comesfromthenormalizationconditionufUl = 1. Toenforcethisconstraint,
weintroducea LagrangemultiplierthatweshalldenotebyAI,andthenmakean
unconstrainedmaximizationof
(12.4)
BysettingthederivativewithrespecttoUlequaltozero,weseethatthisquantity
willhavea stationarypointwhen
( 12.5)
whichsaysthatUlmustbeaneigenvectorofS.Ifweleft-multiplybyufandmake
useofufUl= 1,weseethatthevarianceis givenby
(12.6)
andsothevariancewillbea maximumwhenwesetUlequaltotheeigenvector
havingthelargesteigenvalueAI. Thiseigenvectorisknownasthefirstprincipal
component.
Wecandefineadditionalprincipalcomponentsinanincrementalfashionby
choosingeachnewdirectiontobethatwhichmaximizestheprojectedvariance