566 12.COl\'TINUOliSLATf;I\'T\'ARIAIILES
Figure12.3 Themean~'"xaklogwith!heII"'tlou'PCAe;gerrvecl<)rllUl,. ..'" lorthe011-.....
cligitsdataset.t<>getl'lerwith!hecorrespondi~~.
;ntheOIigi",,1D-<limensionalspace.wecanrepresentthoeigenw:cto<sasimago<of
thosamesilOas,1>0datapoi",,_11,.firstIh'e.ig.n,'occOfS.alongwichtl>ocorre-
sponding.igen,'slue,.are<IIo"'ninFigure12,3,AplO!ofll>ocompletespect"'muf
oigo",·alue,.sone<!intodecreasingorder.is showninFigure12.4{ai.Thedi'tortion
measureJaSSQCiatedwilhchoo<inga particularvalueofM isgi.'enbythosum
oftheeig.n",luesfromM +Iupto 0 andisptO!tedfordifferent,'aluo<of.\1in
Figure12,4(b).
If "'e<utlslitut.(12,12)and(12.13)into(12.10).wecanwritetheI'CAappro~
imationtoa data"eel'"x~i"thefonn
M
"
'-
~ L{x~",)u,+
I:
(xl'u,)u, (12.19)
.-. ._M+l
M
- x+L(X~U,-XTU,)U;
(12.20)
- ,
, to' ,, 10'
, ,
"
,
,
, "-
"
"
", ~ ~ ; 0 ", ~ ~
,., ,., "
FIIIUre12,4 (a)PIolat!heeJoI;nv.loo.".,etrumlortheoff·1inedigitsdataset (b)P10t 01 !hesumatthe