Pattern Recognition and Machine Learning

(Jeff_L) #1

566 12.COl\'TINUOliSLATf;I\'T\'ARIAIILES


Figure12.3 Themean~'"xaklogwith!heII"'tlou'PCAe;gerrvecl<)rllUl,. ..'" lorthe011-.....


cligitsdataset.t<>getl'lerwith!hecorrespondi~~.


;ntheOIigi",,1D-<limensionalspace.wecanrepresentthoeigenw:cto<sasimago<of
thosamesilOas,1>0datapoi",,_11,.firstIh'e.ig.n,'occOfS.alongwichtl>ocorre-
sponding.igen,'slue,.are<IIo"'ninFigure12,3,AplO!ofll>ocompletespect"'muf
oigo",·alue,.sone<!intodecreasingorder.is showninFigure12.4{ai.Thedi'tortion
measureJaSSQCiatedwilhchoo<inga particularvalueofM isgi.'enbythosum
oftheeig.n",luesfromM +Iupto 0 andisptO!tedfordifferent,'aluo<of.\1in
Figure12,4(b).
If "'e<utlslitut.(12,12)and(12.13)into(12.10).wecanwritetheI'CAappro~­
imationtoa data"eel'"x~i"thefonn
M
"
'-

~ L{x~",)u,+
I:

(xl'u,)u, (12.19)


.-. ._M+l
M


  • x+L(X~U,-XTU,)U;


(12.20)


  • ,


, to' ,, 10'


, ,


"


,
,

, "-
"
"

", ~ ~ ; 0 ", ~ ~
,., ,., "

FIIIUre12,4 (a)PIolat!heeJoI;nv.loo.".,etrumlortheoff·1inedigitsdataset (b)P10t 01 !hesumatthe

<:liscarded."".Ioos,which"'l'fesoots!hes.um-ol·SQ"",esdistortlonJi<*~byprojecti<Xlthedataonto


apspaee'"dimensionalitvM.

Free download pdf