Pattern Recognition and Machine Learning

(Jeff_L) #1
12.1.PrincipalComponentAnalysis 565

minimizeJ=UISU2'subjecttothenormalizationconstraintuIU2=1.Usinga


LagrangemultiplierA2toenforcetheconstraint,weconsidertheminimizationof

(12.16)

(12.18)

Exercise 12.2

AppendixA


SettingthederivativewithrespecttoU2tozero,weobtainSU2= A2U2sothatU2
isaneigenvectorofS witheigenvalueA2. Thusanyeigenvectorwilldefinea sta-
tionarypointofthedistortionmeasure.TofindthevalueofJattheminimum,we
back-substitutethesolutionforU2intothedistortionmeasuretogiveJ= A2.We
thereforeobtaintheminimumvalueofJbychoosingU2tobetheeigenvectorcorre-
spondingtothesmallerofthetwoeigenvalues.Thusweshouldchoosetheprincipal
subspacetobealignedwiththeeigenvectorhavingthelargereigenvalue.Thisresult
accordswithourintuitionthat,inordertominimizetheaveragesquaredprojection
distance,weshouldchoosetheprincipalcomponentsubspacetopassthroughthe
meanofthedatapointsandtobealignedwiththedirectionsofmaximumvariance.
Forthecasewhentheeigenvaluesareequal,anychoiceofprincipal directionwill
giverisetothesamevalueofJ.
ThegeneralsolutiontotheminimizationofJforarbitraryDandarbitraryM <
Dis obtainedbychoosingthe{Ui}tobeeigenvectorsofthecovariancematrixgiven
by
SUi= AiUi (12.17)

wherei =1,...,D,andasusualtheeigenvectors{Ui}arechosentobeorthonor-


mal.Thecorrespondingvalueofthedistortionmeasureis thengivenby
D
J= L Ai
i=M+l
whichis simplythesumoftheeigenvaluesofthoseeigenvectorsthatareorthogonal
totheprincipalsubspace.WethereforeobtaintheminimumvalueofJbyselecting
theseeigenvectorstobethosehavingtheD- M smallesteigenvalues,andhence
theeigenvectorsdefiningtheprincipalsubspacearethosecorrespondingtotheM
largesteigenvalues.
AlthoughwehaveconsideredM < D,thePCAanalysisstillholdsifM =
D,inwhichcasethereisnodimensionalityreductionbutsimplya rotationofthe
coordinateaxestoalignwithprincipalcomponents.
Finally,it is worthnotingthatthereexistsa closelyrelatedlineardimensionality
reductiontechniquecalledcanonicalcorrelationanalysis,orCCA(Hotelling,1936;
BachandJordan,2002).WhereasPCAworkswitha singlerandomvariable,CCA
considerstwo(ormore)variablesandtriestofinda correspondingpairoflinear
subspacesthathavehigh cross-correlation,sothateachcomponentwithinoneofthe
subspacesis correlatedwitha singlecomponentfromtheothersubspace.Itssolution
canbeexpressedintermsofa generalizedeigenvectorproblem.

12.1.3 ApplicationsofpeA


WecanillustratetheuseofPCAfordatacompressionbyconsideringtheoff-
linedigitsdataset. Becauseeacheigenvectorofthecovariancematrixisa vector
Free download pdf