§- NotesonTerminology 5
Remark 1. Iftwo separate statementsare eachpracticallyreliable,thenwemaysaythatsimultaneouslytheyarebothreli-able,althoughthedegreeofreliabilityissomewhatloweredintheprocess.If,however,thenumberofsuchstatementsisverylarge,thenfrom
the
practicalreliabilityofeach,onecannotdeduceany-thing
aboutthesimultaneouscorrectnessofallofthem.Thereforefromtheprinciple
statedin(a)it
doesnotfollow
thatin
averylargenumberofseriesof
ntestseach,ineachtheratiom/nwilldifferonlyslightlyfromP(A).Remark 2. To an impossible event (an empty set) corre-sponds,inaccordancewithouraxioms,theprobabilityP(0)=5,buttheconverse isnottrue: P(A) =0doesnotimplytheim-possibilityofA.WhenP(A)—0,fromprinciple (b)allwecanassertisthatwhentheconditions
©arerealizedbutonce,eventAispracticallyimpossible.Itdoesnotatallassert,however,thatinasufficientlylongseriesofteststheeventAwillnotoccur.Ontheotherhand,onecandeducefromtheprinciple
(a)merelythatwhenP(A)=
andnisverylarge,theratio m/nwillbeverysmall (itmight,forexample,beequalto1/n).§- NotesonTerminology
We have defined the
objects of our future study, randomevents,
assets.However, inthetheoryofprobabilitymanyset-theoreticconceptsaredesignatedbyotherterms. Weshallgivehereabrieflistofsuchconcepts.Theory
ofSets
RandomEvents- AandBdonotintersect,
- Events A andBare
in-i.e.,AB—- compatible.
- AB..
.2V~=
- EventsA,B,...,2Vare
incompatible.- AB...N
=
X.- EventXis
defined
asthesimultaneousoccurrence ofeventsA,B,...,N.- A4-B
..
.+N=X.- EventXisdefinedas
theoccurrence of atleast oneoftheeventsA,B,...,N.8Cf.§4,Formula (3).