4 I. ElementaryTheoryofProbability
uponrealizationofconditions 8 belongstothesetA (definedin
anyway),thenwesaythattheeventAhastakenplace.
Example:Letthecomplex
3
ofconditionsbethetossingofa
cointwotimes.ThesetofeventsmentionedinParagraph^con-
sistsofthefactthatateachtosseither
a
headortailmaycomeup.
From
thisitfollowsthat
only
four
differentvariants (elementary
events) arepossible,namely:HH,HT,TH,TT.Ifthe"event
A"
connotestheoccurrence ofarepetition, thenitwillconsistofa
happeningofeitherofthefirstorfourthofthefourelementary
events.Inthismanner,everyeventmayberegardedasasetof
elementaryevents.
4)
Undercertainconditions,which
we
shallnotdiscusshere,
wemay
assumethattoaneventAwhichmayormaynotoccur
underconditions8, is assignedareal numberP(A) whichhas
thefollowingcharacteristics
:
(a) Onecanbepracticallycertainthatifthecomplexofcon-
ditions
6
isrepeatedalargenumberoftimes,n,thenifmbethe
numberofoccurrencesofeventA,
theratiom/n
will
differvery
slightlyfromP
(
A
)
.
(b) IfP(A) isverysmall,onecanbepracticallycertainthat
whenconditions@arerealizedonlyonce,theeventAwouldnot
occuratall.
TheEmpirical
DeductionoftheAxioms.In
general,onemay
assumethatthesystem
g
oftheobservedeventsA,B,C, ...
to
whichareassigneddefiniteprobabilities,formafield
containing
as an element the set E (Axioms I, II, and the first part of
III, postulating theexistence of probabilities). Itis clearthat
O^m/n^l
so
thatthesecondpartofAxiomIIIisquitenatural.
For
theeventE,misalways
equal
ton,so
thatitisnaturalto
postulate ?(E)
=
(Axiom IV).
If, finally,
A andB
are non-
intersecting (incompatible),thenm
—
m
1
+m
2
wherem,m
lt
m
2
arerespectivelythenumberofexperimentsinwhichtheevents
A +B,A,andBoccur.Fromthisitfollowsthat
m m
1
m
2
n n n
Ittherefore
seems
appropriate
to
postulate that P(A +B)
—
P(A) +P(J5) (Axiom V).