24
III. Random
Variables
F
(x)
(a) (cf.
§3,
IIIinChap. II).Sinceourmaininterestliesin
thesevaluesof P
(x)
(A), thedistributionfunctionplays
a
most
significantroleinallourfuturework.
IfthedistributionfunctionF
(x)
(a) isdifferentiate,then
we
callitsderivativewithrespecttoa,
the
probabilitydensityofxatthepointa.
a
IfalsoF
(x)
(a)
=
j
f
ix)
(a) daforeacha, thenwemayex-
—oo
press
the
probabilityfunction?
(x)
(A)
for
each
Borel setA
in
terms
of
f
(x)
(a) in
the
followingmanner:
Pto(A)=ff(*){a)da.
(5)
A
Inthiscasewecallthedistribution
of
xcontinuous.And
in
the
general
case,wewrite,analogously
PW(A)-=
fdFW\a).
(6)
A
Alltheconceptsjustintroducedarecapableofgeneralization
forconditionalprobabilities.Thesetfunction
9%\A)=?
B
(xc:A)
istheconditionalprobabilityfunctionofx underhypothesisB.
Thenon-decreasingfunction
Ff(a)
=
P
B
(x<a)
is thecorrespondingdistribution function, and,
finally
(in
the
casewhereF^(a) isdifferentiate
)
*?(*)=
j;*VM
istheconditionalprobability
density
of
xat the
point
aunder
hypothesisB.
§
- Multi-dimensional
DistributionFunctions
Let
now
nrandomvariablesx
lt
x
2
,...,x
n
begiven.The
point
x
=
(x
u
x
2 ,
...
,Xn)
ofthe7i-dimensionalspaceR
n
isa
function
of theelementaryevent £. Therefore,accordingto thegeneral
rules in
§1,
we have a field
«j(*i;
*.••.*>
consisting of