26 III.
RandomVariableslimF(«
lfa2,...,an)=F(av..
.,«,_
lf-oo,ai+1,..
.,a
n)=0, (7)limyfo,a,,..
.,an)=
F(+<x>, +<x>,..
.,+oo)=- (8)
O,—
+00,a
t— +oo.
...,a
M->
+ooThedistributionfunction F<x
*x*•*•»)
givesdirectlythevaluesofP(Xl'*
2Xh)onlyforthespecialsetsLflia,...
a„. If
ourfield,how-
ever,isaBorelfield,then2?<*"* >*»)
isuniquely
determinedforallBorel
setsin
Rnbyknowledge of the distributionfunctionIfthere existsthederivativewecallthisderivativethen-dimensionalprobabilitydensityof
therandomvariables
x
u
x
2,...,x
natthepointa
ua2r.. ,a„.Ifalsoforevery
point (a
11
a
2 ,...
,a
n)p(xux*.
...,*„>(axa2...
an)=| f...jf{a
lta2a
n)da,da2...dan,—OO—oo —oothenthe
distributionofxlfx
2,...,se»iscalledcontinuous.ForeveryBorelsetAc#M,wehavetheequalitypfeu......,«.)(4)-=yj..
.jf(ava
%t..
.,flji^rffl,.••<**„. (9)4Inclosingthissectionweshallmakeonemoreremarkabouttherelationshipsbetween thevarious
probabilityfunctionsanddistributionfunctions.Giventhesubstitutions/i.
2, .... n\andlet^denotethetransformation
*i=
xik(k=1,2,...,n)ofspacei?wintoitself.Itisthenobviousthatpfrv*^.••-,*»,)(4)=p(*i,*.,...,«w{r-i^)}.(10)Now
letx'=Pk(x)bethe"projection" ofthespaceRnonthespaceRk(k<n),sothatthepoint(x
lfx
2
,..
.,x
n)ismappedontothepoint(x
ux2t...,^
fc).Then,asaresultofFormula
(2)in
§1,Cf.
§3,IVintheSecondChapter.