26 III.
RandomVariables
limF(«
lf
a
2
,
...,a
n
)
=F(a
v
..
.,«,_
lf
-oo,a
i+1
,
..
.,a
n
)
=
0, (7)
limyfo,a,,
..
.,a
n
)
=
F(+<x>, +<x>,..
.,+
oo)
=
- (8)
O,
—
+00,a
t
— +oo.
...,a
M
->
+oo
Thedistributionfunction F<
x
*
x
*•*•»)
givesdirectlythevalues
ofP
(Xl
'
*
2
Xh)
onlyforthespecialsetsL
flia,
...
a
„
. If
ourfield,how-
ever,isaBorelfield,then
2
?<*"* >*»)
isuniquely
determinedfor
allBorel
sets
in
R
n
byknowledge of the distributionfunction
Ifthere existsthederivative
wecallthisderivativethen-dimensionalprobabilitydensityof
therandomvariables
x
u
x
2
,...,x
n
atthepointa
u
a
2r
.. ,a„.
If
alsoforevery
point (a
11
a
2 ,
...
,
a
n)
p(xux*.
...,*„>
(a
x
a
2
...
an)
=
| f
...jf{a
lt
a
2
a
n
)da,da
2
...da
n
,
—OO—oo —oo
thenthe
distributionofx
lf
x
2
,...,se»
iscalledcontinuous.For
everyBorelsetAc#
M
,wehavetheequality
pfeu......,«.)
(4)-=yj.
.
.jf(a
v
a
%t
..
.,
flji^rffl,.••<**„. (9)
4
Inclosingthissectionweshallmakeonemore
remarkabout
therelationshipsbetween thevarious
probabilityfunctionsand
distributionfunctions.
Giventhesubstitution
s
/i.
2, .... n\
andlet^denotethetransformation
*i
=
x
ik
(k
=
1,2,
...,n)
ofspacei?
w
intoitself.Itisthenobviousthat
pfrv*^.
••-,*»,)
(4)
=
p(*i,*.,...,«w{r-i^)}.
(10)
Now
letx'
=
Pk(x)
bethe"projection" ofthespaceR
n
on
the
spaceR
k
(k<n),sothatthepoint(x
lf
x
2
,
..
.
,x
n)
ismappedonto
thepoint(x
u
x
2t
..
.
,^
fc)
.Then,asaresultofFormula
(2)
in
§
1,
Cf.
§3,
IVintheSecondChapter.