Foundations of the theory of probability

(Jeff_L) #1
§


  1. ProbabilitiesinInfinite-dimensionalSpaces 31


Letus

nowprovethatthefieldofprobability

(JP,

P) satisfies

allthe


AxiomsI


  • VI.AxiomIrequiresmerelythat


g

M

beafield.

Thisfacthasalready


beenprovenabove.Moreover,foranarbi-

trary


/x:

P(E)

=
P

fl

(R*)

=
i,

whichprovesthatAxioms


II
and

IV
apply

inthiscase.Finally,

fromthedefinitionofP(A) it


follows
atonce

thatP(A) isnon-

negative (Axiom III).


Itis onlyslightlymorecomplicated toprovethatAxiomV

isalsosatisfied.Inordertodoso,we investigatetwo cylindersets

and
B


-«iV-*.<*>.

Weshallassumethatallvariablesx

h

.andx

N

belongtooneinclu-

sivefinite system (x^,x^,.
..,

x„

n

)

.IfthesetsA andB donot

intersect,therelations

[*/%'*/%'

-'"x

/Hk
)

(=:A

areincompatible.Therefore

?{A
+

B)=P**.;.*^,x

Hi

,

..
.,

*„.J

c:A'

or

(VS'-'SJ^J

=

P^,

fi2.••ftn

{

(^i
1

»

^i,

»*'*'

**fe)

C

^

}

+

P^^...^{(^.

,*„

v









.,

*„,J

cB'}=P(^)
+

P(B)

,

whichconcludesourproof.

OnlyAxiomVIremains.Let

A

1

=>A

2

3

•••
idi4

w

z>

•••

beadecreasingsequenceofcylinder
setssatisfyingthecondition

limP(A
n)

=L>0.





WeshallprovethattheproductofallsetsA
n

isnotempty. We

may
assume,withoutessentiallyrestrictingtheproblem,thatin

the
definitionofthefirstncylindersetsA
k,

onlythefirstnco-

ordinatesXp

k

inthesequence
Free download pdf