§
- ProbabilitiesinInfinite-dimensionalSpaces 31
Letus
nowprovethatthefieldofprobability
(JP,
P) satisfies
allthe
AxiomsI
- VI.AxiomIrequiresmerelythat
g
M
beafield.
Thisfacthasalready
beenprovenabove.Moreover,foranarbi-
trary
/x:
P(E)
=
P
fl
(R*)
=
i,
whichprovesthatAxioms
II
and
IV
apply
inthiscase.Finally,
fromthedefinitionofP(A) it
follows
atonce
thatP(A) isnon-
negative (Axiom III).
Itis onlyslightlymorecomplicated toprovethatAxiomV
isalsosatisfied.Inordertodoso,we investigatetwo cylindersets
and
B
-«iV-*.<*>.
Weshallassumethatallvariablesx
h
.andx
N
belongtooneinclu-
sivefinite system (x^,x^,.
..,
x„
n
)
.IfthesetsA andB donot
intersect,therelations
[*/%'*/%'
-'"x
/Hk
)
(=:A
areincompatible.Therefore
?{A
+
B)=P**.;.*^,x
Hi
,
..
.,
*„.J
c:A'
or
(VS'-'SJ^J
=
P^,
fi2.••ftn
{
(^i
1
»
^i,
»*'*'
**fe)
C
^
}
+
P^^...^{(^.
,*„
v
.,
*„,J
cB'}=P(^)
+
P(B)
,
whichconcludesourproof.
OnlyAxiomVIremains.Let
A
1
=>A
2
3
•••
idi4
w
z>
•••
beadecreasingsequenceofcylinder
setssatisfyingthecondition
limP(A
n)
=L>0.
WeshallprovethattheproductofallsetsA
n
isnotempty. We
may
assume,withoutessentiallyrestrictingtheproblem,thatin
the
definitionofthefirstncylindersetsA
k,
onlythefirstnco-
ordinatesXp
k
inthesequence