Foundations of the theory of probability

(Jeff_L) #1
30

III.
RandomVariables

Proof. Giventhedistributionfunctions

^

1/

u
t

...
/

.
B

, satisfying

thegeneralconditionsofChap.II,
§

3,IIIandalsoconditions
(2)

and
(3).

Everydistributionfunction

&&&...p.

definesuniquely

acorrespondingprobabilityfunction P^^,...^ forallBorelsets

ofR

n

(cf.
§3).

WeshalldealinthefutureonlywithBorelsets

ofR

n

andwith BorelcylindersetsinE.

Foreverycylinderset

weset

PW=

P*,*,...,^

V

).

(4)

SincethesamecylindersetAcanbedennedbyvarioussetsA',

wemust first show that formula
(4)

yields always the same

value
for

P(A).

Let (x^,x^...,
XpJ

be afinitesystem of randomvariables

Xp.
Proceedingfromtheprobabilityfunction P^^,...^ ofthese

randomvariables, wecan, inaccordancewith therulesin
§3,

define the probability function P^^...^ of each subsystem

(x

Hi

,

x

H

,

.

.

.,x

/H

)

. Fromequations
(2)


and
(3)

itfollowsthat

thisprobabilityfunction definedaccordingto
§

3 isthesameas

thefunctionP^^

2

...

Hlt

given
a

priori.
We

shallnowsupposethat

thecylindersetA isdefinedbymeansof

A=p;l„

it

...

H

y)

and simultaneouslyby means of

where all random variables x

M

and
*

belong to the system

(

x

/*i

>

x

ht

>••





»

*«J

»

whichisobviouslynotanessentialrestriction.

The
conditions

and

(V

,

V

, ...,*« )cA"

areequivalent. Therefore

P

^\

H
%


  • ••
    H
    k


(

A')

=
P

^«••n*
{(^»

*/4,





*'

'

>

X

H
k

)

c^'}

=
P^,...^{(*>V

X'

'•"

**J

cA

l

=

%^'^J

A

^

>

whichproves our statement concerningthe uniqueness of the

definitionof P(A).

Free download pdf