30
III.
RandomVariables
Proof. Giventhedistributionfunctions
^
1/
u
t
...
/
.
B
, satisfying
thegeneralconditionsofChap.II,
§
3,IIIandalsoconditions
(2)
and
(3).
Everydistributionfunction
&&&...p.
definesuniquely
acorrespondingprobabilityfunction P^^,...^ forallBorelsets
ofR
n
(cf.
§3).
WeshalldealinthefutureonlywithBorelsets
ofR
n
andwith BorelcylindersetsinE.
Foreverycylinderset
weset
PW=
P*,*,...,^
V
).
(4)
SincethesamecylindersetAcanbedennedbyvarioussetsA',
wemust first show that formula
(4)
yields always the same
value
for
P(A).
Let (x^,x^...,
XpJ
be afinitesystem of randomvariables
Xp.
Proceedingfromtheprobabilityfunction P^^,...^ ofthese
randomvariables, wecan, inaccordancewith therulesin
§3,
define the probability function P^^...^ of each subsystem
(x
Hi
,
x
H
,
.
.
.,x
/H
)
. Fromequations
(2)
and
(3)
itfollowsthat
thisprobabilityfunction definedaccordingto
§
3 isthesameas
thefunctionP^^
2
...
Hlt
given
a
priori.
We
shallnowsupposethat
thecylindersetA isdefinedbymeansof
A=p;l„
it
...
H
y)
and simultaneouslyby means of
where all random variables x
M
and
*
belong to the system
(
x
/*i
>
x
ht
>••
»
*«J
»
whichisobviouslynotanessentialrestriction.
The
conditions
and
(V
,
V
, ...,*« )cA"
areequivalent. Therefore
P
^\
H
%
- ••
H
k
(
A')
=
P
^«••n*
{(^»
*/4,
*'
'
>
X
H
k
)
c^'}
=
P^,...^{(*>V
X'
'•"
**J
cA
l
=
%^'^J
A
^
>
whichproves our statement concerningthe uniqueness of the
definitionof P(A).