Foundations of the theory of probability

(Jeff_L) #1
§

5.EquivalentRandomVariables;VariousKindsof

Convergence
33

Asthelimitofthesequence

(x^,

4

Wl)

,•.•,

#i

Wi)

),

i

=

1,2,3,

..
.

,the

point(x
lt

x
2 ,

..
.

,
£fc)

belongstothesetU
k

.Therefore,
£

belongsto

foranykandthereforetotheproduct

k

*

§5.

EquivalentRandom
Variables;VariousKindsofConvergence

Startingwiththisparagraph,wedealexclusivelywithBorel

fields
of

probability. Aswehavealreadyexplainedin
§

2 ofthe

secondchapter,thisdoesnotconstituteanyessentialrestriction

onourinvestigations.

Tworandom variables xand
y

arecalled equivalent, ifthe

probabilityoftherelationx^=-yis
equaltozero.Itisobviousthat

twoequivalent
randomvariableshavethesameprobabilityfunc-

tion:

pu)(A) =
?(y)(A).

Therefore, the distribution functions F^ and F-W are also

identical.
Inmanyproblemsinthetheoryofprobabilitywemay

substitute for any random variable any equivalent variable.

Nowlet

X\,X%,...
,

X

n

,

... \L)

beasequenceofrandomvariables.Letusstudythe setAofall

elementaryevents
£

forwhich
thesequence (1) converges.

Ifwe

denotebyA

(

™J

thesetsof£forwhichallthefollowinginequalities

hold

K+*-*»|
<^

k=
\,2,...,p

thenweobtainatonce


A=$<§3Mj;.
(2)

mn
p

Accordingto
§3,theset

A^
alwaysbelongstothefieldgf.

The

relation
(2)

shows
that

A,
too,belongsto5-Wemay,therefore,

speak
oftheprobability
of

convergenceofasequenceofrandom

variables,foritalwayshasaperfectlydefinitemeaning.

Now lettheprobability P(A) ofthe convergence setA be

equal tounity. Wemaythenstate that thesequence
(1)

con-

verges withtheprobabilityonetoarandomvariable x,where
Free download pdf