§
5.Equivalent
RandomVariables;VariousKindsofConvergence 35
alsoconvergestox
inprobability.LetAbetheconvergenceset
ofthesequence
(1)
;
then
1
=P(A)^limP{\x
n+p
-x\<e,p
=
0,i,2,...}^limP{\x
n
-x\<e},
from
which
the
convergence inprobabilityfollows.
III. Fortheconvergenceinprobability
of
thesequence
(1)
thefollowing
condition
is
bothnecessaryand
sufficient:
For
any
£
> thereexistsann suchthat,forevery
p
>0,thefollowing
inequalityholds:
P
{|*n+p-*n|>£}<£
.
LetF
x
(a),F
s
(a),.. .,F
n
(a),.. .,F(a) bethedistribution
functionsoftherandomvariablesx
lt
%2,...,£«,...-,x.Ifthe
sequencex
n
convergesinprobabilitytox,thedistributionfunc-
tionF(a) isuniquelydeterminedbyknowledgeofthefunctions
F
n
(a).Wehave,infact,
THEOREM
://
thesequence
x
lt
x
2 ,
...
,x
n
,
... convergesin
probabilityto
x,
thecorrespondingsequence
of
distribution
func-
tions
F
n
(a) convergesateachpointof
continuity
ofF(a) to
the
distributionfunctionF(a)
of
x.
ThatF(a)isreallydeterminedbytheF
n
(a) followsfromthe
factthatF(a)
,
beingamonotonefunction,continuousontheleft,
isuniquelydeterminedbyitsvaluesatthepointsofcontinuity
6
.To
provethetheoremweassumethatF iscontinuousatthepoint
a. Let
a'<a;
thenin
casex<
a',
x
n
==^a
it is necessarythat
\
x
n
-x
\
>a
a'.
Therefore
lim
P
(x
<
a,x
n
^
a)
=
,
F(a')=P{x<a')^P{x
n
<a)
+
P(x<a\x
n
^a)=F
n
(a)
+
P{x<a',x
n
^a),
F
(a')^liminfF
n
(a)
+
limP(x
<
a,x
n
^
a)
,
F(a')^\immiF
n
(a).
(3)
In
an
analogous manner,we
can
prove
that
from
a">
athere
followstherelation
F(a") ^limsupF
c
(a).
(4)
8
Infact,ithasatmostonlyacountablesetofdiscontinuities(seeLebesgue,
LegonssurVintegration,1928,
p.
50.Therefore,thepointsofcontinuityare
everywheredense,andthevalueofthefunctionF(a)atapointofdiscon-
tinuityisdeterminedasthelimitofitsvaluesatthepointsofcontinuity
onitsleft.