Foundations of the theory of probability

(Jeff_L) #1
§

5.Equivalent

RandomVariables;VariousKindsofConvergence 35

alsoconvergestox

inprobability.LetAbetheconvergenceset

ofthesequence
(1)

;

then

1

=P(A)^limP{\x

n+p

-x\<e,p

=
0,i,2,...}^limP{\x

n

-x\<e},

from

which
the

convergence inprobabilityfollows.

III. Fortheconvergenceinprobability
of

thesequence
(1)

thefollowing

condition
is

bothnecessaryand
sufficient:

For
any

£


> thereexistsann suchthat,forevery
p

>0,thefollowing

inequalityholds:


P

{|*n+p-*n|>£}<£

.

LetF
x

(a),F
s

(a),.. .,F
n

(a),.. .,F(a) bethedistribution

functionsoftherandomvariablesx
lt


%2,...,£«,...-,x.Ifthe

sequencex
n

convergesinprobabilitytox,thedistributionfunc-

tionF(a) isuniquelydeterminedbyknowledgeofthefunctions


F
n

(a).Wehave,infact,

THEOREM
://

thesequence
x
lt

x
2 ,

...
,x
n


,

... convergesin


probabilityto
x,


thecorrespondingsequence
of

distribution
func-

tions
F
n

(a) convergesateachpointof

continuity
ofF(a) to

the

distributionfunctionF(a)
of


x.

ThatF(a)isreallydeterminedbytheF
n

(a) followsfromthe

factthatF(a)
,

beingamonotonefunction,continuousontheleft,

isuniquelydeterminedbyitsvaluesatthepointsofcontinuity

6

.To

provethetheoremweassumethatF iscontinuousatthepoint


a. Let
a'<a;


thenin
casex<

a',
x
n

==^a

it is necessarythat

\

x
n

-x
\

>a





a'.

Therefore

lim

P

(x
<

a,x

n

^

a)

=

,

F(a')=P{x<a')^P{x

n

<a)

+

P(x<a\x

n

^a)=F

n

(a)
+

P{x<a',x

n

^a),

F
(a')^liminfF

n

(a)
+

limP(x
<

a,x

n

^

a)

,

F(a')^\immiF
n

(a).
(3)

In
an

analogous manner,we
can

prove
that

from
a">

athere

followstherelation


F(a") ^limsupF
c

(a).
(4)

8

Infact,ithasatmostonlyacountablesetofdiscontinuities(seeLebesgue,

LegonssurVintegration,1928,
p.

50.Therefore,thepointsofcontinuityare

everywheredense,andthevalueofthefunctionF(a)atapointofdiscon-

tinuityisdeterminedasthelimitofitsvaluesatthepointsofcontinuity

onitsleft.
Free download pdf