§5.EquivalentRandomVariables;VariousKindsofConvergence 35alsoconvergestoxinprobability.LetAbetheconvergencesetofthesequence
(1);then1=P(A)^limP{\xn+p-x\<e,p=
0,i,2,...}^limP{\xn-x\<e},fromwhich
theconvergence inprobabilityfollows.III. Fortheconvergenceinprobability
ofthesequence
(1)thefollowingcondition
isbothnecessaryand
sufficient:For
any£
> thereexistsann suchthat,forevery
p>0,thefollowinginequalityholds:
P{|*n+p-*n|>£}<£.LetF
x(a),F
s(a),.. .,F
n(a),.. .,F(a) bethedistributionfunctionsoftherandomvariablesx
lt
%2,...,£«,...-,x.Ifthesequencex
nconvergesinprobabilitytox,thedistributionfunc-tionF(a) isuniquelydeterminedbyknowledgeofthefunctions
F
n(a).Wehave,infact,THEOREM
://thesequence
x
ltx
2 ,...
,x
n
,... convergesin
probabilityto
x,
thecorrespondingsequence
ofdistribution
func-tions
F
n(a) convergesateachpointofcontinuity
ofF(a) tothedistributionfunctionF(a)
of
x.ThatF(a)isreallydeterminedbytheF
n(a) followsfromthefactthatF(a)
,beingamonotonefunction,continuousontheleft,isuniquelydeterminedbyitsvaluesatthepointsofcontinuity6.ToprovethetheoremweassumethatF iscontinuousatthepoint
a. Let
a'<a;
thenin
casex<a',
x
n==^ait is necessarythat\x
n-x
\>aa'.ThereforelimP(x
<a,xn^a)=,F(a')=P{x<a')^P{xn<a)+P(x<a\xn^a)=Fn(a)
+P{x<a',xn^a),F
(a')^liminfFn(a)
+limP(x
<a,xn^a),F(a')^\immiF
n(a).
(3)In
ananalogous manner,we
canprove
thatfrom
a">atherefollowstherelation
F(a") ^limsupF
c(a).
(4)8Infact,ithasatmostonlyacountablesetofdiscontinuities(seeLebesgue,LegonssurVintegration,1928,
p.50.Therefore,thepointsofcontinuityareeverywheredense,andthevalueofthefunctionF(a)atapointofdiscon-tinuityisdeterminedasthelimitofitsvaluesatthepointsofcontinuityonitsleft.