§- AbsoluteandConditionalMathematicalExpectations 39
IX. If
(3)holds for every set A of
gf,then x and
yareequivalent.Fromthe foregoingdefinitionof anintegralwealsoobtainthefollowingproperty,whichisnotfoundintheusualLebesgue
theory.
X. Let
Pi(A)andP
2(A) betwoprobabilityfunctionsdennedonthesamefield
%,
P(A)=
P
x
(A
)+ P
2
(A
\andletxbeintegrableonA
relative
toP
1(A)
andP
2(A).ThenjxP(dE)=^jxPx(dE)
+jxP2{dE).AAA
XL Everyboundedrandomvariableisintegrable.§- AbsoluteandConditional
MathematicalExpectationsLeta;bearandomvariable.TheintegralE(x)=JxP(dE)Eiscalledinthetheoryofprobabilitythemathematicalexpectation
ofthevariablex.FromthepropertiesIII,IV,V,VI,VII,VIII,
XI,itfollowsthat
I. |.E(*)|£E(|*|);II.
E(y) gE(x) if ^
y^xeverywhere;III. inf
(x)^E(x)^sup (x)
;IV. E(Kx+Ly)=
KE(x)4-
LE(y)
;V. E(2xn)=2
E(*n)»iftheseries2
E(I*»l)converges;\n In nVI. Ifxand
yareequivalentthenE(z) =E(2/).VII. Every bounded random variable has
a mathematicalexpectation.
Fromthe
definitionofthe integral, wehavek=+ooE(x)==lim^£raP{&m:^
#
<(jfe.-f
1)w}&=—OO=lim^rm{F((^+
l)m)- F(£m)}.