46 IV. MathematicalExpectations
Therefore,S*convergestoE(J),fromwhichresultstheequation
bEx(t)dt=
limS*n=
E(/)./'TheoremII caneasilybe generalized for double andtripleandhigherordermultipleintegrals.Weshallgiveanapplication
ofthistheoremtooneexampleingeometricprobability.LetGbeameasurableregionoftheplanewhoseshapedependsonchance
;inotherwords,letusassigntoeveryelementaryevent
£ofafieldof probability a definite measurable plane region G. We shall
denoteby/theareaoftheregion
G,andby ?(x,
y)theprob-abilitythatthepoint (x,
y)
belongstotheregion
G.ThenE{J)=jj?{x,y)dxdy.Toprovethis
it
issufficienttonotethat/=sfif(x,y)dxdylP(x;y)=
Ef(x,y),where f(x,y)is the characteristic function of the region G(fix,y)—
1 onGand
f(x,y)=
outsideofG)6.A-6Cf.A.Kolmogorov andM.Leontovich,ZurBerechnungdermittlerenBrownschenFldche,Physik.Zeitschr.d.
Sovietunion,v.
4,1933.