Foundations of the theory of probability

(Jeff_L) #1

46 IV. MathematicalExpectations


Therefore,S*convergestoE(J),fromwhichresultstheequation


b

Ex(t)dt

=
limS*

n

=
E(/).

/'

TheoremII caneasilybe generalized for double andtriple

andhigherordermultipleintegrals.Weshallgiveanapplication


ofthistheoremtooneexampleingeometricprobability.LetGbea

measurableregionoftheplanewhoseshapedependsonchance


;

inotherwords,letusassigntoeveryelementaryevent
£

ofafield

of probability a definite measurable plane region G. We shall


denoteby/theareaoftheregion
G,

andby ?(x,
y)

theprob-

abilitythatthepoint (x,
y)


belongstotheregion
G.

Then

E{J)=jj?{x,y)dxdy.

Toprovethis


it
is

sufficienttonotethat

/

=s

fif(x,y)dxdyl

P(x;y)=
Ef(x,y),

where f(x,y)

is the characteristic function of the region G

(fix,y)


1 onGand
f(x,y)

=
outsideofG)

6

.

A-

6

Cf.A.Kolmogorov andM.Leontovich,ZurBerechnungdermittleren

BrownschenFldche,Physik.Zeitschr.d.


Sovietunion,v.
4,

1933.
Free download pdf