46 IV. MathematicalExpectations
Therefore,S*convergestoE(J),fromwhichresultstheequation
b
Ex(t)dt
=
limS*
n
=
E(/).
/'
TheoremII caneasilybe generalized for double andtriple
andhigherordermultipleintegrals.Weshallgiveanapplication
ofthistheoremtooneexampleingeometricprobability.LetGbea
measurableregionoftheplanewhoseshapedependsonchance
;
inotherwords,letusassigntoeveryelementaryevent
£
ofafield
of probability a definite measurable plane region G. We shall
denoteby/theareaoftheregion
G,
andby ?(x,
y)
theprob-
abilitythatthepoint (x,
y)
belongstotheregion
G.
Then
E{J)=jj?{x,y)dxdy.
Toprovethis
it
is
sufficienttonotethat
/
=s
fif(x,y)dxdyl
P(x;y)=
Ef(x,y),
where f(x,y)
is the characteristic function of the region G
(fix,y)
—
1 onGand
f(x,y)
=
outsideofG)
6
.
A-
6
Cf.A.Kolmogorov andM.Leontovich,ZurBerechnungdermittleren
BrownschenFldche,Physik.Zeitschr.d.
Sovietunion,v.
4,
1933.