§5.DifferentiationandIntegration
ofMathematicalExpectations
45matical expectation E[x'(t)] exists (Property VII of mathe-maticalexpectation,in
§2). Letuschoosea fixed tanddenotebyA theeventxjt
+h)- xjt)
hx'(t)
>£TheprobabilityP(A)tendstozeroash—
foreverye
>0.Sincex{t+h)- %{t)
M, x(t)\^Mholdseverywhere,andmoreoverinthecaseA\xjt
+h)-
xjt)then
h-At)Ex(t+h)^-Ex(t)_Ex,{t)xit+h)- xit)
-x\t)P(A)E2xit+h)
-xit)x'it) P{A)EJhxit+h)xit)x\t)^2M?iA)+a.Wemay choose thee
> arbitrarily, and P(A) is arbitrarilysmallforanysufficiently
smallh.ThereforedtExit)=lim. Exit+h)-Exit)
Exit),h+whichwas
tobeproved.
Proofof TheoremII.Letk=
nsn={]?x(t+kh),^-~r-bSince S
nconverges to J—Jx(t) dt, we canchoose for anyae
> anN suchthatfromn^Ntherefollows theinequalityP(^)=P{|S,
-/|>£}<£.Ifwesetk=nS:=l^Exit+kh)=EiS
n),k=\then|S*-E(/)|=
|E(SW-/)|^E|SW-/|P(^)EA\SnJ\+9(A)Ei|SnJ\{^2KP{A)
+e
^(2K
+l)e.