Foundations of the theory of probability

(Jeff_L) #1
§

5.Differentiationand

Integration
of

MathematicalExpectations
45

matical expectation E[x'(t)] exists (Property VII of mathe-

maticalexpectation,in
§

2). Letuschoosea fixed tanddenote

byA theevent

xjt
+

h)


  • xjt)


h

x'(t)
>

£

TheprobabilityP

(

A)tendstozeroash


foreverye
>

0.Since

x{t+h)


  • %{t)


M, x(t)\^M

holdseverywhere,

andmoreoverinthecaseA

\

xjt
+

h)-
xjt)

then


h

-At)

Ex(t+h)^-Ex(t)

_

Ex

,

{t)

xit+h)


  • xit)


-x\t)

P(A)E

2

xit+

h)
-xit)

x'it) P{A)E

J

h

xit+

h)





xit)

x\t)

^2M?iA)+

a.

Wemay choose thee
> arbitrarily, and P(A) is arbitrarily

smallforanysufficiently
smallh.Therefore

dt

Exit)

=lim

. Exit+h)-Exit)


Exit),

h+

whichwas
tobeproved.


Proofof TheoremII.Let

k

=
n

s

n

={]?x(t

+

kh),

^-~r-

b

Since S
n

converges to J


J

x(t) dt, we canchoose for any

a

e
> anN suchthatfromn^Ntherefollows theinequality

P(^)=P{|S,
-/|>£}<

£.

Ifweset

k=n

S:

=

l^Exit+kh)

=

EiS
n),

k=\

then

|S*-E(/)|

=
|E(S

W

-/)|^E|S

W

-/|

P(^)E

A

\S

n





J\

+9(A)Ei|S

n





J\{

^

2KP{A)
+

e
^

(2K
+

l)e.
Free download pdf