48 V. ConditionalProbabilitiesand
MathematicalExpectationsPM(A)>0.The
functionPU(B) ofuthusdeterminedtowithinequivalence,wecallthe
conditionalprobability
ofBwithrespecttou(or,for
agiven
u).ThevalueofP
M(Z?) whenu=
awe
shalldesignate
byPu(a;B).The
proof
ofthe existenceanduniqueness
of P
U(B). Ifwemultiply(1)byP{ucA} =
P<«>(A), we
obtain, on the left,P{uczA}PucA{B)=P(B{ucA})=
P\Bu-HAj)and,ontheright,P{ucA}E{ucA}Pu(B)=JPU(B)P(dE)=JPU(B)P<*>(rf£(«));{ucA}
AleadingtotheformulaP(B«-1M))=/P
u(B)PW(i£W).(2)Aandconversely
(1)followsfrom
(2). Inthecase P(uHA)=
0,inwhich
case (1)ismeaningless,equation (2) becomestriviallytrue.Condition
(2)isthusequivalentto
(1).InaccordancewithPropertyIXoftheintegral
(§1,Chap.IV) therandomvariablexis uniquelydefined (except forequivalence) bymeansofthevaluesoftheintegralfxPd(E)Aforall setsof g. SinceP
U(B) isa randomvariabledeterminedontheprobabilityfield
(8f<*>,P(M>),itfollowsthatformula
(2)uniquelydeterminesthisvariable PU(B) exceptforequivalence.Wemuststill
provetheexistenceof P
M(J5). Weshall
applyherethefollowingtheoremof Nikodym1:Let
5beaBorelfield,P(A)anon-negativecompletelyadditivesetfunctiondefinedon
5
(intheterminologyoftheprobabilitytheory,arandomvariableon
(5,
P)),andletQ(A) beanothercompletely additive set function defined on
J$f>
such thatfromQ(A)4=0
follows
theinequality P(A)
>- Thenthereexists
a
function
/(£)
(intheterminology ofthetheory
ofprobability,arandomvariable) whichismeasurablewith respectto
%,
andwhichsatisfies,foreachsetAof
5,
theequation10.Nikodym,SurunegeneralisationdesintegratesdeM.J.Radon,Fund.Math.v.
15,
1930
p.168 (TheoremIII).