48 V. ConditionalProbabilitiesand
MathematicalExpectations
PM(A)
>
0.The
function
P
U
(B) ofuthusdeterminedtowithin
equivalence,wecallthe
conditionalprobability
of
Bwithrespect
tou(or,for
a
given
u).ThevalueofP
M
(Z?) whenu
=
awe
shall
designate
by
P
u
(a;B).
The
proof
of
the existenceanduniqueness
of P
U
(B). Ifwe
multiply
(1)
by
P{ucA} =
P<«>(A), we
obtain, on the left,
P{uczA}P
ucA
{B)=P(B{ucA})=
P\Bu-HAj)
and,ontheright,
P{ucA}E
{ucA}
P
u
(B)=
JP
U
(B)P(dE)
=JP
U
(B)P<*>(rf£(«))
;
{ucA}
A
leadingtotheformula
P(B«-
1
M))=/P
u
(B)PW(i£W).
(2)
A
andconversely
(1)
followsfrom
(2). Inthecase P
(u
HA)
=
0,
inwhich
case (1)ismeaningless,equation (2) becomestrivially
true.Condition
(2)
isthusequivalentto
(1).
Inaccordancewith
PropertyIXoftheintegral
(§1,
Chap.IV) therandomvariable
xis uniquelydefined (except forequivalence) bymeansofthe
valuesoftheintegral
fxPd(E)
A
forall setsof g. SinceP
U
(B) isa randomvariabledetermined
ontheprobabilityfield
(8f<*>,
P
(M
>),itfollowsthatformula
(2)
uniquelydeterminesthisvariable P
U
(B) exceptforequivalence.
Wemust
still
provetheexistenceof P
M
(J5). Weshall
apply
herethefollowingtheoremof Nikodym
1
:
Let
5
beaBorelfield,P(A)anon-negativecompletelyadditive
setfunctiondefinedon
5
(intheterminologyoftheprobability
theory,arandomvariableon
(5,
P)),andletQ(A) beanother
completely additive set function defined on
J$f>
such thatfrom
Q(A)4=0
follows
the
inequality P(A)
>
- Thenthereexists
a
function
/(£)
(intheterminology ofthe
theory
of
probability,
arandomvariable) whichismeasurablewith respectto
%,
and
whichsatisfies,foreachsetAof
5,
theequation
1
0.Nikodym,SurunegeneralisationdesintegratesdeM.J.Radon,Fund.
Math.v.
15,
1930
p.
168 (TheoremIII).