50 V. ConditionalProbabilitiesandMathematicalExpectations
allowustocarryovermanyotherbasicpropertiesofthe
absolute
probabilityP(B)totheconditionalprobabilityP
U
(B).However,
wemustnotforgetthatP
U
(B) is,for
a
fixed
set
B,
arandomvari-
abledetermineduniquely onlytowithinequivalence.
ProofofTheorem
I.Ifwe
assume—contrarytotheassertion
tobeproved—thatonasetM
s
a
E
(M
> with
P
(M
>
(M) >0,thein-
equalityP
U
(B)
g
1
+e,
e>0, holdstrue,thenaccordingtofor-
mula
(1)
P{uc:M}{B)
=E
{ucM}
P
u
(B)^i
+
e,
whichis obviously impossible.In thesame wayweprove that
almostsurelyP
U
(B)
^
0.
Proofof
TheoremII. Fromtheconvergence oftheseries
ZE\P
u
(B
n)\
=2E(P
u
(fi
fl
))
=2P(£
n
)
=
P(B)
n n n
itfollowsfromPropertyVofmathematicalexpectation (Chap.
IV,
§
2) thattheseries
2P.(BJ
n
almostsurelyconverges.Sincetheseries
ZE
{
uoA}\Pu(B
n
)\=Z
E
{u<:A}(Pu(Bn))
=
£
P{
UC
A}(B
n)
=
P{uCA}(B)
n n n
converges foreverychoice ofthe setA suchthat P
(u>
*(A)
>0,
thenfromPropertyVofmathematicalexpectationjustreferred
toitfollowsthatforeachAoftheabovekindwehavetherelation
E
{
uc^}(|;P„(£
n
))
=|E(,
ei)(W)
=
P
{uca}(B)
=E
{ucA}
(P
u
(B
n))
f
andfromthis,equation
(5)
immediatelyfollows.
Toclosethissectionweshallpointouttwoparticularcases.
If, first,
u(i)
=
c (a
constant), then P
C
(A)
=
P(A) almost
surely. If, however, we
set
u(i)
=
£,
thenwe obtain at once
thatP$\A) isalmostsurelyequaltooneon
Aandisalmostsurely
equaltozeroonA. P${A)isthusrevealedtobe
thecharacteristic
functionofsetA.
§
- ExplanationofaBorelParadox
LetuschooseforourbasicsetE the setofall pointsona
sphericalsurface. Our
5
wil1betheaggregateofallBorel
sets
ofthe
sphericalsurface.Andfinally, ourP(A) istobepropor-
tional
to
themeasureofsetA.Letusnowchoosetwodiametrically