50 V. ConditionalProbabilitiesandMathematicalExpectationsallowustocarryovermanyotherbasicpropertiesofthe
absoluteprobabilityP(B)totheconditionalprobabilityPU(B).However,wemustnotforgetthatP
U
(B) is,for
afixed
setB,
arandomvari-abledetermineduniquely onlytowithinequivalence.
ProofofTheoremI.Ifweassume—contrarytotheassertion
tobeproved—thatonasetM
sa
E(M> with
P(M>
(M) >0,thein-equalityP
U(B)
g1+e,
e>0, holdstrue,thenaccordingtofor-mula
(1)
P{uc:M}{B)=E{ucM}Pu(B)^i
+e,whichis obviously impossible.In thesame wayweprove thatalmostsurelyPU(B)
^0.ProofofTheoremII. Fromtheconvergence oftheseriesZE\P
u(Bn)\=2E(Pu(fifl))=2P(£n)=
P(B)n n nitfollowsfromPropertyVofmathematicalexpectation (Chap.IV,
§2) thattheseries2P.(BJnalmostsurelyconverges.SincetheseriesZE
{uoA}\Pu(B
n
)\=ZE
{u<:A}(Pu(Bn))=£
P{
UCA}(B
n)=
P{uCA}(B)n n nconverges foreverychoice ofthe setA suchthat P(u>*(A)
>0,thenfromPropertyVofmathematicalexpectationjustreferredtoitfollowsthatforeachAoftheabovekindwehavetherelationE{uc^}(|;P„(£
n))=|E(,ei)(W)
=
P
{uca}(B)=E{ucA}(Pu(Bn))fandfromthis,equation
(5)immediatelyfollows.Toclosethissectionweshallpointouttwoparticularcases.If, first,
u(i)=c (aconstant), then P
C(A)=
P(A) almostsurely. If, however, weset
u(i)=£,thenwe obtain at oncethatP$\A) isalmostsurelyequaltooneonAandisalmostsurelyequaltozeroonA. P${A)isthusrevealedtobethecharacteristicfunctionofsetA.§- ExplanationofaBorelParadox
LetuschooseforourbasicsetE the setofall pointsonasphericalsurface. Our
5wil1betheaggregateofallBorelsetsofthesphericalsurface.Andfinally, ourP(A) istobepropor-tional
tothemeasureofsetA.Letusnowchoosetwodiametrically