§2.IndependentRandomVariables
59thespaceRn,thencondition
(1) isalso
sufficientforthemutualindependence
ofthevariables
x
lfx
2 ,...,x
n.Proof.Let%'
=(x^,
xit,....,xik)andx"=
(xh,xh,.
..,xjm)betwonon-intersectingsubsystemsofthevariablesx
ltx
2 ,...
,x„.Wemustshow,onthebasisofformula
( 1 ),thatforeverytwoBorelsetsA'andA"ofRk(orRm)thefollowingequationholds:P(*'
GA',x"cA")=
P(*'
cA')P(*"c.4").
(2)Thisfollowsatonce from
(1)forthesets oftheformA'=
{x(l<alfxit<a2,..
.,xik<ak
},A"=K
<bltxh<b2,..
.,Af;m<bm}.ItcanbeshownthatthispropertyofthesetsA'andA"ispre-served under formation of sums and differences, from whichequation (2) followsforall Borelsets.Nowletx—
{x^} beanarbitrary (ingeneralinfinite) aggre-gateofrandomvariables.
//the
field
$(;r)coincideswiththe
fieldB$
M(Misthesetofalln),theaggregate
ofequationsJVi,,..../*(*i»*i..-•»««)=F
/Al{a1)Ffli(a2)...F^n(an) (3)is necessaryand
sufficient forthe mutualindependence
ofthevariablesxu.Thenecessityofthisconditionfollowsatoncefromformula( 1).Weshallnowprovethatitisalsosufficient.LetM'andM"betwonon-intersectingsubsetsofthesetMofallindices
^andletA' (orA") beasetofB%Mdefinedbyarelationamongthe'x^withindices/xfromM'
(orM").Wemustshow
thatwe
thenhaveP(A'A")=P(^,)P(^,/)- (4)
If A' andA" arecylinder sets thenwearedealing with rela-tionsamongafinitesetofvariables*
u
,equation
(4)representsinthatcaseasimpleconsequenceofpreviousresults (Formula
(2)).Andsincerelation
(4)holdsforsumsanddifferencesofsetsA' (or
A") also, wehaveproved (4) forall setsofB%Mas well.
NowforeverynofasetMlettherebegivenaprioriadistri-butionfunction F^(a)
;inthatcasewecanconstruct afield
ofprobability suchthat certainrandomvariables
x^
in that
field(passumingallvaluesinM) willbemutuallyindependent,whereXpWillhave
foritsdistributionfunctiontheF^(a)givenapriori.