Foundations of the theory of probability

(Jeff_L) #1
§

2.IndependentRandomVariables
59

thespaceR

n

,then

condition
(1) is

also
sufficientforthemutual

independence
of

the

variables
x
lf

x
2 ,

..

.

,x
n

.

Proof.Let

%'
=(x^,
x

it

,

....,x

ik

)

and

x"=
(x

h

,

x

h

,

.
..,

x

jm

)

be

twonon-intersectingsubsystemsofthevariablesx
lt

x
2 ,

...
,

x„.

Wemustshow,onthebasisofformula
( 1 )

,thatforeverytwo

BorelsetsA'andA"ofR

k

(orR

m

)

thefollowingequationholds

:

P

(*'
GA',x"c

A")=
P

(*'
c

A')P(*"c.4").
(2)

Thisfollowsatonce from
(1)

forthesets oftheform

A'

=
{x

(l

<

a

lf

x

it

<a

2

,

..
.,

x

ik

<a

k
}

,

A"=

K

<

b

lt

x

h

<b

2

,

..
.,

Af

;m

<

b

m}

.

Itcanbeshown

thatthispropertyofthesetsA'andA"ispre-

served under formation of sums and differences, from which

equation (2) followsforall Borelsets.

Nowletx


{x^} beanarbitrary (ingeneralinfinite) aggre-

gateofrandomvariables.
//

the
field
$

(;r)

coincideswiththe
field

B$


M

(Misthesetofall

n)

,

theaggregate
of

equations

JVi,,..../*(*i»*i.

.-•»««)=F
/Al

{a

1

)F

fli

(a

2

)...F^

n

(a

n) (3)

is necessaryand
sufficient for

the mutualindependence
of

the

variablesx

u

.

Thenecessityofthisconditionfollowsatoncefromformula

( 1

).Weshallnowprovethatitisalsosufficient.LetM'andM"

betwonon-intersectingsubsetsofthesetMofallindices
^

and

letA' (orA") beasetofB%

M

definedbyarelationamongthe'x^

withindices/xfromM'
(orM").Wemust

show
that

we
thenhave

P(A'A")=P(^

,

)P(^

,/

)


  • (4)


If A' andA" arecylinder sets thenwearedealing with rela-

tionsamongafinitesetofvariables*
u


,

equation
(4)

represents

inthatcaseasimpleconsequenceofpreviousresults (Formula


(2)).

Andsincerelation
(4)

holdsforsumsanddifferencesof

setsA' (or
A") also, wehaveproved (4) forall setsof

B%

M

as well.


Nowforevery

n

ofasetMlettherebegivenaprioriadistri-

butionfunction F^(a)
;

inthatcasewecanconstruct afield
of

probability suchthat certainrandomvariables


x^
in that
field

(p

assumingallvaluesinM) willbemutuallyindependent,where

XpWillhave
for

itsdistributionfunctiontheF^(a)givenapriori.
Free download pdf