§
2.IndependentRandomVariables
59
thespaceR
n
,then
condition
(1) is
also
sufficientforthemutual
independence
of
the
variables
x
lf
x
2 ,
..
.
,x
n
.
Proof.Let
%'
=(x^,
x
it
,
....,x
ik
)
and
x"=
(x
h
,
x
h
,
.
..,
x
jm
)
be
twonon-intersectingsubsystemsofthevariablesx
lt
x
2 ,
...
,
x„.
Wemustshow,onthebasisofformula
( 1 )
,thatforeverytwo
BorelsetsA'andA"ofR
k
(orR
m
)
thefollowingequationholds
:
P
(*'
GA',x"c
A")=
P
(*'
c
A')P(*"c.4").
(2)
Thisfollowsatonce from
(1)
forthesets oftheform
A'
=
{x
(l
<
a
lf
x
it
<a
2
,
..
.,
x
ik
<a
k
}
,
A"=
K
<
b
lt
x
h
<b
2
,
..
.,
Af
;m
<
b
m}
.
Itcanbeshown
thatthispropertyofthesetsA'andA"ispre-
served under formation of sums and differences, from which
equation (2) followsforall Borelsets.
Nowletx
—
{x^} beanarbitrary (ingeneralinfinite) aggre-
gateofrandomvariables.
//
the
field
$
(;r)
coincideswiththe
field
B$
M
(Misthesetofall
n)
,
theaggregate
of
equations
JVi,,..../*(*i»*i.
.-•»««)=F
/Al
{a
1
)F
fli
(a
2
)...F^
n
(a
n) (3)
is necessaryand
sufficient for
the mutualindependence
of
the
variablesx
u
.
Thenecessityofthisconditionfollowsatoncefromformula
( 1
).Weshallnowprovethatitisalsosufficient.LetM'andM"
betwonon-intersectingsubsetsofthesetMofallindices
^
and
letA' (orA") beasetofB%
M
definedbyarelationamongthe'x^
withindices/xfromM'
(orM").Wemust
show
that
we
thenhave
P(A'A")=P(^
,
)P(^
,/
)
- (4)
If A' andA" arecylinder sets thenwearedealing with rela-
tionsamongafinitesetofvariables*
u
,
equation
(4)
represents
inthatcaseasimpleconsequenceofpreviousresults (Formula
(2)).
Andsincerelation
(4)
holdsforsumsanddifferencesof
setsA' (or
A") also, wehaveproved (4) forall setsof
B%
M
as well.
Nowforevery
n
ofasetMlettherebegivenaprioriadistri-
butionfunction F^(a)
;
inthatcasewecanconstruct afield
of
probability suchthat certainrandomvariables
x^
in that
field
(p
assumingallvaluesinM) willbemutuallyindependent,where
XpWillhave
for
itsdistributionfunctiontheF^(a)givenapriori.