58 VI.Independence;TheLawofLarge
Numbers(2).Conversely
sinceP
v(uczA)
isuniquelydeterminedby
(4)towithinprobability
zero,thenequation
(2)followsfrom
(4)almostcertainly.Definition 2 :LetMbeasetoffunctions
u^
(I)oftThesefunctionsarecalledmutuallyindependentintheirtotality
ifthefollowing condition is satisfied. Let W and M" be
two non-intersecting subsetsofM, andletA' (orA")
beasetfromgdefinedby
arelationamongu fromM'
(orM");thenwehaveP(A'A")=
P(A')P\A").TheaggregateofalP«/tofW (orofM") canberegardedas
coordinates of somefunctionv! (or u"). Definition 2 requiresonlytheindependenceofu'andu"inthesenseofDefinition 1 foreachchoiceofnon-intersectingsetsWandM"
.Ifu
ltMz,...,w
naremutuallyindependent,theninallcasesP{ulaAl,u2cA2,...,unczAn
}(K)=
P(«!c4JP(«tc^2).,P(mbc^
providedthesets A
A:belongtothecorresponding%{Uk)(provedby induction).This equationis not ingeneral,
however,atallsufficientforthemutualindependenceofu
ltu
2,...,u
n.Equation
(5)iseasilygeneralizedforthecaseofacountablyinfiniteproduct.From themutual independence of u^ ineach finite group(wmi»u/*,>•->ut*k)ft doesn°tnecessarily follow that
all uflaremutuallyindependent.Finally,itiseasytonotethatthemutualindependenceofthefunctionsu^
isinrealityapropertyofthecorrespondingparti-tionstyUfl.Further,if u^ aresingle-valuedfunctionsofthecor-respondingufi,thenfromthemutualindependenceof
u^followsthatofu'.§- IndependentRandomVariables
Ifxux
2 ,. ..
,
x
naremutuallyindependentrandomvariablesthenfromequation
(2)
oftheforegoingparagraphfollows, inparticular,theformula
F^* *»>(ava2,..
.,an)=
F<**>(ax)F™(a2)...F^)(an
).
(
1)//
inthiscasethefieldg(x»**••>**)
consistsonly
ofBorelsets
of