Foundations of the theory of probability

(Jeff_L) #1
58 VI.Independence;TheLawofLarge
Numbers

(2).

Conversely
sinceP
v

(uczA)
isuniquelydeterminedby
(4)

towithinprobability
zero,thenequation
(2)

followsfrom
(4)

almostcertainly.

Definition 2 :LetMbeasetoffunctions
u^
(I)

of

t

These

functionsarecalledmutuallyindependentintheirtotality
ifthe

following condition is satisfied. Let W and M" be

two non-

intersecting subsetsofM, andletA' (orA")
beasetfrom

g

definedby
a

relationamongu fromM'
(orM");thenwehave

P(A'A")=
P(A')P\A").

TheaggregateofalP«

/t

ofW (orofM") canberegardedas

coordinates of somefunctionv! (or u"). Definition 2 requires

onlytheindependenceofu'andu"inthesenseofDefinition 1 for

eachchoiceofnon-intersectingsetsWandM"

.

Ifu
lt

Mz,...,w
n

aremutuallyindependent,theninallcases

P{u

l

aA

l

,

u

2

cA

2

,...,u

n

czA

n
}

(K)

=
P(«!c

4J

P(«

t

c^

2

).,P(m

b

c^

providedthesets A
A:

belongtothecorresponding

%

{Uk)

(proved

by induction).

This equationis not ingeneral,
however,atall

sufficientforthemutualindependenceofu
lt

u
2

,...,u
n

.

Equation
(5)

iseasilygeneralizedforthecaseofacountably

infiniteproduct.

From themutual independence of u^ ineach finite group

(

w

mi»

u

/*,>

•->u

t*k)

ft doesn°t

necessarily follow that
all u

fl

are

mutuallyindependent.

Finally,itiseasytonotethatthemutualindependenceofthe

functions

u^
isinrealityapropertyofthecorrespondingparti-

tionsty

Ufl

.Further,if u^ aresingle-valuedfunctionsofthecor-

respondingu

fi

,

thenfromthemutualindependenceof
u^

follows

thatofu'.

§


  1. IndependentRandomVariables


Ifx

u

x
2 ,

. ..
,


x
n

aremutuallyindependentrandomvariables

thenfromequation
(2)


oftheforegoingparagraphfollows, in

particular,theformula


F^

* *»>

(a

v

a

2

,

..
.

,a

n

)

=
F<**>(a

x

)

F™(a

2

)

.

..F^)(a

n
)

.
(
1

)

//


inthiscasethefield

g

(x

»**••>**)
consistsonly
of

Borelsets
of
Free download pdf